Spaces:
Running
Running
File size: 21,708 Bytes
e38a7f3 aa36621 e38a7f3 6e90f18 e38a7f3 f23d1ef b480b95 95a1b3a f2704f0 57f3636 694e4b1 57f3636 f23d1ef e38a7f3 694e4b1 e38a7f3 32ef857 e38a7f3 c183193 e38a7f3 b480b95 f23d1ef f442f9e f23d1ef 137aa2f 694e4b1 137aa2f 611fa7e e38a7f3 694e4b1 6e90f18 e38a7f3 d4d5bd6 e38a7f3 a0c67cd e38a7f3 694e4b1 137aa2f efa0082 137aa2f 145f349 e38a7f3 f23d1ef 137aa2f f23d1ef cc8f83d f23d1ef 145f349 c445b9f f23d1ef c445b9f f23d1ef 57f3636 312f207 57f3636 2eb7ca3 57f3636 a98d932 694e4b1 57f3636 d4d5bd6 f23d1ef d4d5bd6 f23d1ef 137aa2f 77b4152 efa0082 616982f 95a1b3a 616982f d4d5bd6 77b4152 d4d5bd6 573e272 e356f83 1864f11 137aa2f 964b339 d4d5bd6 f23d1ef 137aa2f f23d1ef d4d5bd6 137aa2f f23d1ef 8990429 145f349 a0c67cd 145f349 b480b95 972a836 145f349 e38a7f3 d4d5bd6 eb7e3d6 1864f11 f2704f0 eb7e3d6 2cd4a2a eb7e3d6 2cd4a2a eb7e3d6 72a034a e13b586 89a24bc e38a7f3 72a034a e38a7f3 1a4c7df e38a7f3 1098c94 13342a4 e38a7f3 1ff6c08 e38a7f3 1ff6c08 e38a7f3 13342a4 e38a7f3 72a034a e38a7f3 89a24bc e38a7f3 694e4b1 6e90f18 9a94d5b 694e4b1 e38a7f3 694e4b1 e38a7f3 72a034a 89a24bc 72a034a 89a24bc e38a7f3 410b665 e70e9b8 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 e13b586 e38a7f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import torch, os, traceback, sys, warnings, shutil, numpy as np
import gradio as gr
import librosa
import asyncio
import rarfile
import edge_tts
import yt_dlp
import ffmpeg
import gdown
import subprocess
import wave
import soundfile as sf
from scipy.io import wavfile
from datetime import datetime
from urllib.parse import urlparse
from mega import Mega
from flask import Flask, request, jsonify, send_file,session,render_template
import base64
import tempfile
import threading
import hashlib
import os
import werkzeug
from pydub import AudioSegment
import uuid
from threading import Semaphore
from threading import Lock
from multiprocessing import Process, SimpleQueue, set_start_method,get_context
from queue import Empty
from pydub import AudioSegment
from flask_dance.contrib.google import make_google_blueprint, google
import io
app = Flask(__name__)
app.secret_key = 'smjain_6789'
now_dir = os.getcwd()
cpt={}
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
split_model="htdemucs"
convert_voice_lock = Lock()
# Define the maximum number of concurrent requests
MAX_CONCURRENT_REQUESTS = 2 # Adjust this number as needed
# Initialize the semaphore with the maximum number of concurrent requests
request_semaphore = Semaphore(MAX_CONCURRENT_REQUESTS)
task_status_tracker = {}
os.environ["OAUTHLIB_INSECURE_TRANSPORT"] = "1" # ONLY FOR TESTING, REMOVE IN PRODUCTION
os.environ["OAUTHLIB_RELAX_TOKEN_SCOPE"] = "1"
app.config["GOOGLE_OAUTH_CLIENT_ID"] = "144930881143-n3e3ubers3vkq7jc9doe4iirasgimdt2.apps.googleusercontent.com"
app.config["GOOGLE_OAUTH_CLIENT_SECRET"] = "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"
google_blueprint = make_google_blueprint(scope=["profile", "email"])
app.register_blueprint(google_blueprint, url_prefix="/login")
#set_start_method('spawn', force=True)
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
from config import Config
config = Config()
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
hubert_model = None
f0method_mode = ["pm", "harvest", "crepe"]
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
@app.route("/")
def index():
# Check if user is logged in
if google.authorized:
return render_template("index.html", logged_in=True)
else:
return render_template("index.html", logged_in=False)
if os.path.isfile("rmvpe.pt"):
f0method_mode.insert(2, "rmvpe")
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
load_hubert()
weight_root = "weights"
index_root = "weights/index"
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
def check_models():
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
for file in model_files:
if file.endswith(".pth"):
weights_model.append(file)
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
return (
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
gr.Dropdown.update(choices=sorted(weights_index))
)
def clean():
return (
gr.Dropdown.update(value=""),
gr.Slider.update(visible=False)
)
# Function to delete files
def cleanup_files(file_paths):
for path in file_paths:
try:
os.remove(path)
print(f"Deleted {path}")
except Exception as e:
print(f"Error deleting {path}: {e}")
@app.route("/create_song")
def create_song():
if not google.authorized:
return redirect(url_for("google.login"))
resp = google.get("/oauth2/v2/userinfo")
assert resp.ok, resp.text
email = resp.json()["email"]
user_info = resp.json()
user_id = user_info.get("id")
name = user_info.get("name")
#if not user_exists(email):
# user_data = {'user_id': user_id, 'user_name': name, 'email': email, 'model_created': 'No', 'time_used': '0','model_id':''}
# add_user(user_data)
#models = get_user_models(email)
# Assuming we're interested in whether any model has been created
#model_exists = len(models) > 0
return render_template("ui.html", email=email)
@app.route("/logout")
def logout():
# Clear the session
session.clear()
#if "google_oauth_token" in session:
# del session["google_oauth_token"]
return redirect(url_for("index"))
@app.route('/status/<audio_id>', methods=['GET'])
def get_status(audio_id):
# Retrieve the task status using the unique ID
print(audio_id)
status_info = task_status_tracker.get(audio_id, {"status": "Unknown ID", "percentage": 0})
return jsonify({"audio_id": audio_id, "status": status_info["status"], "percentage": status_info["percentage"]})
processed_audio_storage = {}
@app.route('/convert_voice', methods=['POST'])
def api_convert_voice():
acquired = request_semaphore.acquire(blocking=False)
if not acquired:
return jsonify({"error": "Too many requests, please try again later"}), 429
#task_status_tracker[unique_id] = {"status": "Starting", "percentage": 0}
try:
#if session.get('submitted'):
# return jsonify({"error": "Form already submitted"}), 400
# Process the form here...
# Set the flag indicating the form has been submitted
#session['submitted'] = True
print(request.form)
print(request.files)
spk_id = request.form['spk_id']+'.pth'
voice_transform = request.form['voice_transform']
# The file part
if 'file' not in request.files:
return jsonify({"error": "No file part"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
if file.content_length > 10 * 1024 * 1024:
return jsonify({"error": "File size exceeds 6 MB"}), 400
content_type_format_map = {
'audio/mpeg': 'mp3',
'audio/wav': 'wav',
'audio/x-wav': 'wav',
'audio/mp4': 'mp4',
'audio/x-m4a': 'mp4',
}
# Default to 'mp3' if content type is unknown (or adjust as needed)
audio_format = content_type_format_map.get(file.content_type, 'mp3')
# Convert the uploaded file to an audio segment
audio = AudioSegment.from_file(io.BytesIO(file.read()), format=audio_format)
#audio = AudioSegment.from_file(io.BytesIO(file.read()), format="mp3") # Adjust format as necessary
file.seek(0) # Reset file pointer after reading
# Calculate audio length in minutes
audio_length_minutes = len(audio) / 60000.0 # pydub returns length in milliseconds
if audio_length_minutes > 5:
return jsonify({"error": "Audio length exceeds 5 minutes"}), 400
#created_files = []
# Save the file to a temporary path
unique_id = str(uuid.uuid4())
print(unique_id)
filename = werkzeug.utils.secure_filename(file.filename)
input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio_{unique_id}.{filename.split('.')[-1]}")
file.save(input_audio_path)
#created_files.append(input_audio_path)
#split audio
task_status_tracker[unique_id] = {"status": "Processing: Step 1", "percentage": 30}
cut_vocal_and_inst(input_audio_path,spk_id,unique_id)
print("audio splitting performed")
vocal_path = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/vocals.wav"
inst = f"output/{spk_id}_{unique_id}/{split_model}/{spk_id}_input_audio_{unique_id}/no_vocals.wav"
print("*****before making call to convert ", unique_id)
#task_status_tracker[unique_id] = "Processing: Step 2"
#output_queue = SimpleQueue()
ctx = get_context('spawn')
output_queue = ctx.Queue()
# Create and start the process
p = ctx.Process(target=worker, args=(spk_id, vocal_path, voice_transform, unique_id, output_queue,))
p.start()
# Wait for the process to finish and get the result
p.join()
print("*******waiting for process to complete ")
output_path = output_queue.get()
task_status_tracker[unique_id] = {"status": "Processing: Step 2", "percentage": 80}
#if isinstance(output_path, Exception):
# print("Exception in worker:", output_path)
#else:
# print("output path of converted voice", output_path)
#output_path = convert_voice(spk_id, vocal_path, voice_transform,unique_id)
output_path1= combine_vocal_and_inst(output_path,inst,unique_id)
processed_audio_storage[unique_id] = output_path1
session['processed_audio_id'] = unique_id
task_status_tracker[unique_id] = {"status": "Finalizing", "percentage": 100}
print(output_path1)
#created_files.extend([vocal_path, inst, output_path])
task_status_tracker[unique_id]["status"] = "Completed"
return jsonify({"message": "File processed successfully", "audio_id": unique_id}), 200
finally:
request_semaphore.release()
#if os.path.exists(output_path1):
# return send_file(output_path1, as_attachment=True)
#else:
# return jsonify({"error": "File not found."}), 404
def convert_voice_thread_safe(spk_id, vocal_path, voice_transform, unique_id):
with convert_voice_lock:
return convert_voice(spk_id, vocal_path, voice_transform, unique_id)
def get_vc_safe(sid, to_return_protect0):
with convert_voice_lock:
return get_vc(sid, to_return_protect0)
@app.route('/')
def upload_form():
return render_template('ui.html')
@app.route('/get_processed_audio/<audio_id>')
def get_processed_audio(audio_id):
# Retrieve the path from temporary storage or session
if audio_id in processed_audio_storage:
file_path = processed_audio_storage[audio_id]
return send_file(file_path, as_attachment=True)
return jsonify({"error": "File not found."}), 404
def worker(spk_id, input_audio_path, voice_transform, unique_id, output_queue):
try:
output_audio_path = convert_voice(spk_id, input_audio_path, voice_transform, unique_id)
print("output in worker for audio file", output_audio_path)
output_queue.put(output_audio_path)
print("added to output queue")
except Exception as e:
print("exception in adding to queue")
output_queue.put(e) # Send the exception to the main process for debugging
def convert_voice(spk_id, input_audio_path, voice_transform,unique_id):
get_vc(spk_id,0.5)
print("*****before makinf call to vc ", unique_id)
output_audio_path = vc_single(
sid=0,
input_audio_path=input_audio_path,
f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key
f0_file=None ,
f0_method="rmvpe",
file_index=spk_id, # Assuming file_index_path corresponds to file_index
index_rate=0.75,
filter_radius=3,
resample_sr=0,
rms_mix_rate=0.25,
protect=0.33, # Adjusted from protect_rate to protect to match the function signature,
unique_id=unique_id
)
print(output_audio_path)
return output_audio_path
def cut_vocal_and_inst(audio_path,spk_id,unique_id):
vocal_path = "output/result/audio.wav"
os.makedirs("output/result", exist_ok=True)
#wavfile.write(vocal_path, audio_data[0], audio_data[1])
#logs.append("Starting the audio splitting process...")
#yield "\n".join(logs), None, None
print("before executing splitter")
command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output/{spk_id}_{unique_id}"
env = os.environ.copy()
# Add or modify the environment variable for this subprocess
env["CUDA_VISIBLE_DEVICES"] = "0"
#result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
print("Demucs process failed:", result.stderr)
else:
print("Demucs process completed successfully.")
print("after executing splitter")
#for line in result.stdout:
# logs.append(line)
# yield "\n".join(logs), None, None
print(result.stdout)
vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
#logs.append("Audio splitting complete.")
def combine_vocal_and_inst(vocal_path, inst_path, output_path):
vocal_volume=1
inst_volume=1
os.makedirs("output/result", exist_ok=True)
# Assuming vocal_path and inst_path are now directly passed as arguments
output_path = f"output/result/{output_path}.mp3"
#command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
#command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
# Load the audio files
print(vocal_path)
print(inst_path)
vocal = AudioSegment.from_file(vocal_path)
instrumental = AudioSegment.from_file(inst_path)
# Overlay the vocal track on top of the instrumental track
combined = vocal.overlay(instrumental)
# Export the result
combined.export(output_path, format="mp3")
#result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return output_path
def vc_single(
sid,
input_audio_path,
f0_up_key,
f0_file,
f0_method,
file_index,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
unique_id
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model, version, cpt
print("***** in vc ", unique_id)
try:
logs = []
print(f"Converting...")
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
print(f"found audio ")
f0_up_key = int(f0_up_key)
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
print("loaded hubert")
if_f0 = 1
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file
)
# Get the current thread's name or ID
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
index_info = (
"Using index:%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
print("writing to FS")
#output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed
# Assuming 'unique_id' is passed to convert_voice function along with 'sid'
print("***** before writing to file outout ", unique_id)
output_file_path = os.path.join("output", f"converted_audio_{sid}_{unique_id}.wav") # Adjust path as needed
print("******* output file path ",output_file_path)
os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist
print("create dir")
# Save the audio file using the target sampling rate
sf.write(output_file_path, audio_opt, tgt_sr)
print("wrote to FS")
# Return the path to the saved file along with any other information
return output_file_path
except:
info = traceback.format_exc()
return info, (None, None)
def get_vc(sid, to_return_protect0):
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
if sid == "" or sid == []:
global hubert_model
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
if_f0 = cpt[sid].get("f0", 1)
version = cpt[sid].get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt[sid]["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt[sid]["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return (
gr.Slider.update(maximum=2333, visible=False),
gr.Slider.update(visible=True),
gr.Dropdown.update(choices=sorted(weights_index), value=""),
gr.Markdown.update(value="# <center> No model selected")
)
print(f"Loading {sid} model...")
selected_model = sid[:-4]
cpt[sid] = torch.load(os.path.join(weight_root, sid), map_location="cpu")
tgt_sr = cpt[sid]["config"][-1]
cpt[sid]["config"][-3] = cpt[sid]["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt[sid].get("f0", 1)
if if_f0 == 0:
to_return_protect0 = {
"visible": False,
"value": 0.5,
"__type__": "update",
}
else:
to_return_protect0 = {
"visible": True,
"value": to_return_protect0,
"__type__": "update",
}
version = cpt[sid].get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt[sid]["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt[sid]["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt[sid]["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt[sid]["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt[sid]["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt[sid]["config"][-3]
weights_index = []
for _, _, index_files in os.walk(index_root):
for file in index_files:
if file.endswith('.index') and "trained" not in file:
weights_index.append(os.path.join(index_root, file))
if weights_index == []:
selected_index = gr.Dropdown.update(value="")
else:
selected_index = gr.Dropdown.update(value=weights_index[0])
for index, model_index in enumerate(weights_index):
if selected_model in model_index:
selected_index = gr.Dropdown.update(value=weights_index[index])
break
return (
gr.Slider.update(maximum=n_spk, visible=True),
to_return_protect0,
selected_index,
gr.Markdown.update(
f'## <center> {selected_model}\n'+
f'### <center> RVC {version} Model'
)
)
if __name__ == '__main__':
app.run(debug=False, port=5000,host='0.0.0.0')
|