File size: 13,151 Bytes
560b597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import importlib
import warnings
from copy import deepcopy
from math import ceil

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from einops import rearrange
from huggingface_hub import PyTorchModelHubMixin
import torchvision.transforms as transforms


from unidepth.models.unidepthv2.decoder import Decoder
from unidepth.utils.constants import (IMAGENET_DATASET_MEAN,
                                      IMAGENET_DATASET_STD)
from unidepth.utils.distributed import is_main_process
from unidepth.utils.geometric import (generate_rays,
                                      spherical_zbuffer_to_euclidean)
from unidepth.utils.misc import (first_stack, last_stack, max_stack,
                                 mean_stack, softmax_stack)

STACKING_FNS = {
    "max": max_stack,
    "mean": mean_stack,
    "first": first_stack,
    "last": last_stack,
    "softmax": softmax_stack,
}
RESOLUTION_LEVELS = 10


# inference helpers
def _check_ratio(image_ratio, ratio_bounds):
    ratio_bounds = sorted(ratio_bounds)
    if ratio_bounds is not None and (
        image_ratio < ratio_bounds[0] or image_ratio > ratio_bounds[1]
    ):
        warnings.warn(
            f"Input image ratio ({image_ratio:.3f}) is out of training "
            f"distribution: {ratio_bounds}. This may lead to unexpected results. "
            f"Consider resizing/padding the image to match the training distribution."
        )


def _check_resolution(shape_constraints, resolution_level):
    if resolution_level is None:
        warnings.warn(
            "Resolution level is not set. Using max resolution. "
            "You can tradeoff resolution for speed by setting a number in [0,10]. "
            "This can be achieved by setting model's `resolution_level` attribute."
        )
        resolution_level = RESOLUTION_LEVELS
    pixel_bounds = sorted(shape_constraints["pixels_bounds_ori"])
    pixel_range = pixel_bounds[-1] - pixel_bounds[0]
    clipped_resolution_level = min(max(resolution_level, 0), RESOLUTION_LEVELS)
    if clipped_resolution_level != resolution_level:
        warnings.warn(
            f"Resolution level {resolution_level} is out of bounds ([0,{RESOLUTION_LEVELS}]). "
            f"Clipping to {clipped_resolution_level}."
        )
    shape_constraints["pixels_bounds"] = [
        pixel_bounds[0]
        + ceil(pixel_range * clipped_resolution_level / RESOLUTION_LEVELS),
        pixel_bounds[0]
        + ceil(pixel_range * clipped_resolution_level / RESOLUTION_LEVELS),
    ]
    return shape_constraints


def _get_closes_num_pixels(image_shape, pixels_bounds):
    h, w = image_shape
    num_pixels = h * w
    pixels_bounds = sorted(pixels_bounds)
    num_pixels = max(min(num_pixels, pixels_bounds[1]), pixels_bounds[0])
    return num_pixels


def _shapes(image_shape, shape_constraints):
    h, w = image_shape
    image_ratio = w / h
    # _check_ratio(image_ratio, shape_constraints["ratio_bounds"])
    num_pixels = _get_closes_num_pixels(
        (h / shape_constraints["patch_size"], w / shape_constraints["patch_size"]),
        shape_constraints["pixels_bounds"],
    )
    h = ceil((num_pixels / image_ratio) ** 0.5 - 0.5)
    w = ceil(h * image_ratio - 0.5)
    ratio = h / image_shape[0] * shape_constraints["patch_size"]
    return (
        h * shape_constraints["patch_size"],
        w * shape_constraints["patch_size"],
    ), ratio


def _preprocess(rgbs, intrinsics, shapes, ratio):
    rgbs = F.interpolate(rgbs, size=shapes, mode="bilinear", antialias=True)
    if intrinsics is not None:
        intrinsics = intrinsics.clone()
        intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio
        intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio
        intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio
        intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio
        return rgbs, intrinsics
    return rgbs, None


def _postprocess(outs, ratio, original_shapes, mode="nearest-exact"):
    outs["depth"] = F.interpolate(outs["depth"], size=original_shapes, mode=mode)
    outs["confidence"] = F.interpolate(
        outs["confidence"], size=original_shapes, mode="bilinear", antialias=True
    )
    outs["K"][:, 0, 0] = outs["K"][:, 0, 0] / ratio
    outs["K"][:, 1, 1] = outs["K"][:, 1, 1] / ratio
    outs["K"][:, 0, 2] = outs["K"][:, 0, 2] / ratio
    outs["K"][:, 1, 2] = outs["K"][:, 1, 2] / ratio
    return outs


class UniDepthV2(
    nn.Module,
    PyTorchModelHubMixin,
    library_name="UniDepth",
    repo_url="https://github.com/lpiccinelli-eth/UniDepth",
    tags=["monocular-metric-depth-estimation"],
):
    def __init__(
        self,
        config,
        eps: float = 1e-6,
        **kwargs,
    ):
        super().__init__()
        self.build(config)
        self.interpolation_mode = "bilinear"
        self.eps = eps
        self.resolution_level = 10

    def forward(self, inputs, image_metas=None):
        H, W = inputs["depth"].shape[-2:]

        if "K" in inputs:
            rays, angles = generate_rays(inputs["K"], (H, W))
            inputs["rays"] = rays
            inputs["angles"] = angles

        features, tokens = self.pixel_encoder(inputs[f"image"])

        cls_tokens = [x.contiguous() for x in tokens]
        features = [
            self.stacking_fn(features[i:j]).contiguous()
            for i, j in self.slices_encoder_range
        ]
        tokens = [
            self.stacking_fn(tokens[i:j]).contiguous()
            for i, j in self.slices_encoder_range
        ]
        global_tokens = [cls_tokens[i] for i in [-2, -1]]
        camera_tokens = [cls_tokens[i] for i in [-3, -2, -1]] + [tokens[-2]]

        inputs["features"] = features
        inputs["tokens"] = tokens
        inputs["global_tokens"] = global_tokens
        inputs["camera_tokens"] = camera_tokens

        outs = self.pixel_decoder(inputs, image_metas)

        angles = rearrange(
            generate_rays(outs["K"], (H, W), noisy=False)[-1],
            "b (h w) c -> b c h w",
            h=H,
            w=W,
        )
        predictions = F.interpolate(
            outs["depth"],
            size=(H, W),
            mode="bilinear",
            align_corners=False,
            antialias=True,
        )
        confidence = F.interpolate(
            outs["confidence"],
            size=(H, W),
            mode="bilinear",
            align_corners=False,
            antialias=True,
        )
        predictions_3d = torch.cat((angles, predictions), dim=1)
        predictions_3d = spherical_zbuffer_to_euclidean(
            predictions_3d.permute(0, 2, 3, 1)
        ).permute(0, 3, 1, 2)

        outputs = {
            "K": outs["K"],
            "depth": predictions.squeeze(1),
            "confidence": confidence,
            "points": predictions_3d,
            "depth_features": outs["depth_features"],
        }
        return outputs

    @torch.no_grad()
    def infer(self, rgbs: torch.Tensor, intrinsics=None):
        shape_constraints = self.shape_constraints
        if rgbs.ndim == 3:
            rgbs = rgbs.unsqueeze(0)
        if intrinsics is not None and intrinsics.ndim == 2:
            intrinsics = intrinsics.unsqueeze(0)

        B, _, H, W = rgbs.shape
        target_aspect_ratio = 1.33  # for example
        # Calculate new width or height based on target aspect ratio
        new_width = int(H * target_aspect_ratio)
        # Resize the image
        resize_transform = transforms.Resize((H, new_width))  # You can also pad if needed
        rgbs = resize_transform(rgbs)
        rgbs = rgbs.to(self.device)

        if intrinsics is not None:
            scale_width = new_width / W
            # Adjust the intrinsic matrix
            K_new = intrinsics.clone()
            K_new[0, 0] = K_new[0, 0] * scale_width  # f_x
            K_new[0, 2] = K_new[0, 2] * scale_width  # c_x
            intrinsics = K_new.to(self.device)

        # process image and intrinsiscs (if any) to match network input (slow?)
        if rgbs.max() > 5 or rgbs.dtype == torch.uint8:
            rgbs = rgbs.to(torch.float32).div(255)
        if rgbs.min() >= 0.0 and rgbs.max() <= 1.0:
            rgbs = TF.normalize(
                rgbs,
                mean=IMAGENET_DATASET_MEAN,
                std=IMAGENET_DATASET_STD,
            )

        # check resolution constraints: tradeoff resolution and speed
        shape_constraints = _check_resolution(shape_constraints, self.resolution_level)

        # get image shape
        (h, w), ratio = _shapes((H, W), shape_constraints)
        rgbs, gt_intrinsics = _preprocess(
            rgbs,
            intrinsics,
            (h, w),
            ratio,
        )

        # run encoder
        features, tokens = self.pixel_encoder(rgbs)

        cls_tokens = [x.contiguous() for x in tokens]
        features = [
            self.stacking_fn(features[i:j]).contiguous()
            for i, j in self.slices_encoder_range
        ]
        tokens = [
            self.stacking_fn(tokens[i:j]).contiguous()
            for i, j in self.slices_encoder_range
        ]
        global_tokens = [cls_tokens[i] for i in [-2, -1]]
        camera_tokens = [cls_tokens[i] for i in [-3, -2, -1]] + [tokens[-2]]

        # get data fro decoder and adapt to given camera
        inputs = {}
        inputs["features"] = features
        inputs["tokens"] = tokens
        inputs["global_tokens"] = global_tokens
        inputs["camera_tokens"] = camera_tokens
        inputs["image"] = rgbs
        if gt_intrinsics is not None:
            rays, angles = generate_rays(gt_intrinsics, (h, w))
            inputs["rays"] = rays
            inputs["angles"] = angles
            inputs["K"] = gt_intrinsics

        outs = self.pixel_decoder(inputs, {})
        # undo the reshaping and get original image size (slow)
        outs = _postprocess(outs, ratio, (H, W), mode=self.interpolation_mode)
        pred_intrinsics = outs["K"]
        depth = outs["depth"]
        confidence = outs["confidence"]

        # final 3D points backprojection
        intrinsics = intrinsics if intrinsics is not None else pred_intrinsics
        angles = generate_rays(intrinsics, (H, W))[-1]
        angles = rearrange(angles, "b (h w) c -> b c h w", h=H, w=W)
        points_3d = torch.cat((angles, depth), dim=1)
        points_3d = spherical_zbuffer_to_euclidean(
            points_3d.permute(0, 2, 3, 1)
        ).permute(0, 3, 1, 2)

        outputs = {
            "intrinsics": pred_intrinsics,
            "points": points_3d,
            "depth": depth.squeeze(1),
            "confidence": confidence,
        }
        return outputs

    def load_pretrained(self, model_file):
        device = (
            torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        )
        dict_model = torch.load(model_file, map_location=device)
        if "model" in dict_model:
            dict_model = dict_model["model"]
        new_state_dict = deepcopy(
            {k.replace("module.", ""): v for k, v in dict_model.items()}
        )

        info = self.load_state_dict(new_state_dict, strict=False)
        if is_main_process():
            print(
                f"Loaded from {model_file} for {self.__class__.__name__} results in:",
                info,
            )

    @property
    def device(self):
        return next(self.parameters()).device

    def build(self, config):
        mod = importlib.import_module("unidepth.models.encoder")
        pixel_encoder_factory = getattr(mod, config["model"]["pixel_encoder"]["name"])
        pixel_encoder_config = {
            **config["training"],
            **config["data"],
            **config["model"]["pixel_encoder"],
        }
        pixel_encoder = pixel_encoder_factory(pixel_encoder_config)

        config["model"]["pixel_encoder"]["patch_size"] = (
            14 if "dino" in config["model"]["pixel_encoder"]["name"] else 16
        )
        pixel_encoder_embed_dims = (
            pixel_encoder.embed_dims
            if hasattr(pixel_encoder, "embed_dims")
            else [getattr(pixel_encoder, "embed_dim") * 2**i for i in range(4)]
        )
        config["model"]["pixel_encoder"]["embed_dim"] = getattr(
            pixel_encoder, "embed_dim"
        )
        config["model"]["pixel_encoder"]["embed_dims"] = pixel_encoder_embed_dims
        config["model"]["pixel_encoder"]["depths"] = pixel_encoder.depths

        pixel_decoder = Decoder(config)

        self.pixel_encoder = pixel_encoder
        self.pixel_decoder = pixel_decoder
        stacking_fn = config["model"]["pixel_encoder"]["stacking_fn"]
        assert (
            stacking_fn in STACKING_FNS
        ), f"Stacking function {stacking_fn} not found in {STACKING_FNS.keys()}"
        self.stacking_fn = STACKING_FNS[stacking_fn]

        self.slices_encoder_range = list(
            zip([0, *pixel_encoder.depths[:-1]], pixel_encoder.depths)
        )
        self.shape_constraints = config["data"]["shape_constraints"]
        self.shape_constraints["pixels_bounds_ori"] = self.shape_constraints.get(
            "pixels_bounds", [1400, 2400]
        )