Spaces:
Sleeping
Sleeping
File size: 22,441 Bytes
3139db4 33e257e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
from datasets import load_dataset
import shutil
import json
from collections import defaultdict
import multiprocessing
import gensim
from sklearn.metrics import classification_report
from gensim import corpora
from gensim.test.utils import common_texts
from gensim.models import Word2Vec
from gensim.models import KeyedVectors
from gensim.models import fasttext
from gensim.test.utils import datapath
from wefe.datasets import load_bingliu
from wefe.metrics import RNSB
from wefe.query import Query
from wefe.word_embedding_model import WordEmbeddingModel
from wefe.utils import plot_queries_results, run_queries
import pandas as pd
import gensim.downloader as api
import glob
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from wefe.metrics import WEAT
from wefe.datasets import load_weat
from wefe.utils import run_queries
from wefe.utils import plot_queries_results
import random
from scipy.special import expit
import math
import sys
import os
import argparse
import nltk
import scipy.sparse
import numpy as np
import string
import io
from sklearn.model_selection import train_test_split
'''STEPS FOR CODE:
1. Train word embeddings on Simple English Wikipedia;
2. Compare these to other pre-trained embeddings;
3. Quantify biases that exist in these word embeddings;
4. Use your word embeddings as features in a simple text classifier;
'''
def load_vectors(fname):
fin = io.open(fname, 'r', encoding='utf-8', newline='\n', errors='ignore')
n, d = map(int, fin.readline().split())
data = {}
# print("Hello", n, d)
for line in fin:
tokens = line.rstrip().split(' ')
data[tokens[0]] = map(float, tokens[1:])
# print(data)
print(data)
return data
def train_embeddings():
'''TRAIN WORD EMBEDDINGS
This will be making use of the dataset from wikipedia and the first step'''
dataset = load_dataset("wikipedia", "20220301.simple")
cores = multiprocessing.cpu_count()
# check the first example of the training portion of the dataset :
# print(dataset['train'][0])
dataset_size = len(dataset)
### BUILD VOCAB ###
# print(type(dataset["train"][0]))
vocab = set()
vocab_size = 0
count = 0
## Generate vocab and split sentances and words?
data = []
for index, page in enumerate(dataset["train"]):
document = page["text"]
document = document.replace("\n", ". ")
# print(document)
for sent in document.split("."):
# print("Sentance:", sent)
new_sent = []
clean_sent =[s for s in sent if s.isalnum() or s.isspace()]
clean_sent = "".join(clean_sent)
for word in clean_sent.split(" "):
if len(word) > 0:
new_word = word.lower()
# print("Word:", new_word)
if new_word[0] not in string.punctuation:
new_sent.append(new_word)
if len(new_sent) > 0:
data.append(new_sent)
# print("New Sent:", new_sent)
for index, page in enumerate(dataset["train"]):
# print(page["text"])
# for text in page:
# print(text)
text = page["text"]
clean_text = [s for s in text if s.isalnum() or s.isspace()]
clean_text = "".join(clean_text)
clean_text = clean_text.replace("\n", " ")
# text = text.replace('; ', ' ').replace(", ", " ").replace("\n", " ").replace(":", " ").replace(". ", " ").replace("! ", " ").replace("? ", " ").replace()
for word in clean_text.split(" "):
# print(word)
if word != "\n" and word != " " and word not in vocab:
vocab.add(word)
vocab_size += 1
# if index == 10:
# break
# print(f"word #{index}/{count} is {word}")
count += 1
# print(f"There are {vocab_size} vocab words")
embeddings_model = Word2Vec(
data,
epochs= 10,
window=10,
vector_size= 50)
embeddings_model.save("word2vec.model")
skip_model = Word2Vec(
data,
epochs= 10,
window=10,
vector_size= 50,
sg=1)
skip_model.save("skip2vec.model")
embeddings_model = Word2Vec.load("word2vec.model")
skip_model = Word2Vec.load("skip2vec.model")
# embeddings_model.train(dataset, total_examples=dataset_size, epochs=15)
# print(embeddings_model['train'])
# print(embeddings_model.wv["france"])
return embeddings_model, skip_model
def get_data():
dataset = load_dataset("wikipedia", "20220301.simple")
cores = multiprocessing.cpu_count()
# check the first example of the training portion of the dataset :
# print(dataset['train'][0])
dataset_size = len(dataset)
### BUILD VOCAB ###
# print(type(dataset["train"][0]))
vocab = set()
vocab_size = 0
count = 0
## Generate vocab and split sentances and words?
data = []
num_sents = 0
for index, page in enumerate(dataset["train"]):
document = page["text"]
document = document.replace("\n", ". ")
# print(document)
for sent in document.split("."):
num_sents += 1
# print("Sentance:", sent)
new_sent = []
clean_sent =[s for s in sent if s.isalnum() or s.isspace()]
clean_sent = "".join(clean_sent)
for word in clean_sent.split(" "):
if len(word) > 0:
new_word = word.lower()
# print("Word:", new_word)
if new_word[0] not in string.punctuation:
new_sent.append(new_word)
if len(new_sent) > 0:
data.append(new_sent)
# print("New Sent:", new_sent)
return data, num_sents
def compare_embeddings(cbow, skip, urban, fasttext):
'''COMPARE EMBEDDINGS'''
print("Most Similar to dog")
print("cbow", cbow.wv.most_similar(positive=['dog'], negative=[], topn=2))
print("skip", skip.wv.most_similar(positive=['dog'], negative=[], topn=2))
print("urban", urban.most_similar(positive=['dog'], negative=[], topn=2))
print("fasttext", fasttext.most_similar(positive=['dog'], negative=[], topn=2))
print("\nMost Similar to Pizza - Pepperoni + Pretzel")
print("cbow", cbow.wv.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2))
print("skip", skip.wv.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2))
print("urban", urban.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2))
print("fasttext", fasttext.most_similar(positive=['pizza', 'pretzel'], negative=['pepperoni'], topn=2))
print("\nMost Similar to witch - woman + man")
print("cbow", cbow.wv.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2))
print("skip", skip.wv.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2))
print("urban", urban.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2))
print("fasttext", fasttext.most_similar(positive=['witch', 'man'], negative=['woman'], topn=2))
print("\nMost Similar to mayor - town + country")
print("cbow", cbow.wv.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2))
print("skip", skip.wv.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2))
print("urban", urban.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2))
print("fasttext", fasttext.most_similar(positive=['mayor', 'country'], negative=['town'], topn=2))
print("\nMost Similar to death")
print("cbow", cbow.wv.most_similar(positive=['death'], negative=[], topn=2))
print("skip", skip.wv.most_similar(positive=['death'], negative=[], topn=2))
print("urban", urban.most_similar(positive=['death'], negative=[], topn=2))
print("fasttext", fasttext.most_similar(positive=['death'], negative=[], topn=2))
def quantify_bias(cbow, skip, urban, fasttext):
'''QUANTIFY BIASES'''
'''Using WEFE, RNSB'''
RNSB_words = [
['christianity'],
['catholicism'],
['islam'],
['judaism'],
['hinduism'],
['buddhism'],
['mormonism'],
['scientology'],
['taoism']]
weat_wordset = load_weat()
models = [WordEmbeddingModel(cbow.wv, "CBOW"),
WordEmbeddingModel(skip.wv, "skip-gram"),
WordEmbeddingModel(urban, "urban dictionary"),
WordEmbeddingModel(fasttext, "fasttext")]
# Define the 10 Queries:
# print(weat_wordset["science"])
religions = ['christianity',
'catholicism',
'islam',
'judaism',
'hinduism',
'buddhism',
'mormonism',
'scientology',
'taoism',
'atheism']
queries = [
# Flowers vs Insects wrt Pleasant (5) and Unpleasant (5)
Query([religions, weat_wordset['arts']],
[weat_wordset['career'], weat_wordset['family']],
['Religion', 'Art'], ['Career', 'Family']),
Query([religions, weat_wordset['weapons']],
[weat_wordset['male_terms'], weat_wordset['female_terms']],
['Religion', 'Weapons'], ['Male terms', 'Female terms']),
]
wefe_results = run_queries(WEAT,
queries,
models,
metric_params ={
'preprocessors': [
{},
{'lowercase': True }
]
},
warn_not_found_words = True
).T.round(2)
print(wefe_results)
plot_queries_results(wefe_results).show()
def text_classifier(cbow):
'''SIMPLE TEXT CLASSIFIER'''
'''For each document, average together all embeddings for the
individual words in that document to get a new, d-dimensional representation
of that document (this is essentially a “continuous bag-of-words”). Note that
your input feature size is only d now, instead of the size of your entire vocabulary.
Compare the results of training a model using these “CBOW” input features to
your original (discrete) BOW model.'''
pos_train_files = glob.glob('aclImdb/train/pos/*')
neg_train_files = glob.glob('aclImdb/train/neg/*')
# print(pos_train_files[:5])
num_files_per_class = 1000
# bow_train_files = cbow
all_train_files = pos_train_files[:num_files_per_class] + neg_train_files[:num_files_per_class]
# vectorizer = TfidfVectorizer(input="filename", stop_words="english")
# vectors = vectorizer.fit_transform(all_train_files)
d = len(cbow.wv["man"])
vectors = np.empty([len(all_train_files), d])
count = 0
vocab = set()
for doc in all_train_files:
temp_array = avg_embeddings(doc, cbow, vocab)
if len(temp_array) > 0:
vectors[count] = temp_array
count += 1
else:
vectors = np.delete(vectors, count)
# vectors = np.array(avg_embeddings(doc, cbow) for doc in all_train_files)
# print(vectors)
# print(vocab)
# len(vectorizer.vocabulary_)
vectors[0].sum()
# print("Vector at 0", vectors[0])
X = vectors
y = [1] * num_files_per_class + [0] * num_files_per_class
len(y)
x_0 = X[0]
w = np.zeros(X.shape[1])
# x_0_dense = x_0.todense()
x_0.dot(w)
w,b = sgd_for_lr_with_ce(X,y)
# w
# sorted_vocab = sorted([(k,v) for k,v in vectorizer.vocabulary_.items()],key=lambda x:x[1])
sorted_vocab = sorted(vocab)
# sorted_vocab = [a for (a,b) in sorted_vocab]
sorted_words_weights = sorted([x for x in zip(sorted_vocab, w)], key=lambda x:x[1])
sorted_words_weights[-50:]
preds = predict_y_lr(w,b,X)
preds
w,b = sgd_for_lr_with_ce(X, y, num_passes=10)
y_pred = predict_y_lr(w,b,X)
print(classification_report(y, y_pred))
# compute for dev set
# pos_dev_files = glob.glob('aclImdb/test/pos/*')
# neg_dev_files = glob.glob('aclImdb/test/neg/*')
# num_dev_files_per_class = 100
# all_dev_files = pos_dev_files[:num_dev_files_per_class] + neg_dev_files[:num_dev_files_per_class]
# # use the same vectorizer from before! otherwise features won't line up
# # don't fit it again, just use it to transform!
# X_dev = vectorizer.transform(all_dev_files)
# y_dev = [1]* num_dev_files_per_class + [0]* num_dev_files_per_class
# # don't need new w and b, these are from out existing model
# y_dev_pred = predict_y_lr(w,b,X_dev)
# print(classification_report(y_dev, y_dev_pred))
def avg_embeddings(doc, model, vocab: set):
words = []
# remove out-of-vocabulary words
with open(doc, "r") as file:
for line in file:
for word in line.split():
words.append(word)
vocab.add(word)
words = [word for word in words if word in model.wv.index_to_key]
if len(words) >= 1:
return np.mean(model.wv[words], axis=0)
else:
return []
def sent_vec(sent, cbow):
vector_size = cbow.wv.vector_size
wv_res = np.zeros(vector_size)
# print(wv_res)
ctr = 1
for w in sent:
if w in cbow.wv:
ctr += 1
wv_res += cbow.wv[w]
wv_res = wv_res/ctr
return wv_res
def spacy_tokenizer(sentence):
# Creating our token object, which is used to create documents with linguistic annotations.
# doc = nlp(sentence)
# print(doc)
# print(type(doc))
# Lemmatizing each token and converting each token into lowercase
# mytokens = [ word.lemma_.lower().strip() for word in doc ]
# print(mytokens)
# Removing stop words
# mytokens = [ word for word in mytokens if word not in stop_words and word not in punctuations ]
# return preprocessed list of tokens
return 0
def cbow_classifier(cbow, data, num_sentances):
vocab_len = len(cbow.wv.index_to_key)
embeddings = []
embedding_dict = {}
vocab = set(cbow.wv.index_to_key)
# print("Data len", len(data))
# print("Data at 0", data[0])
X_temp = np.empty([len(data), 1])
X_train_vect = np.array([np.array([cbow.wv[i] for i in ls if i in vocab])
for ls in data])
X_test_vect = np.array([np.array([cbow.wv[i] for i in ls if i in vocab])
for ls in data])
# words = [word for word in words if word in cbow.wv.index_to_key]
for word in vocab:
# embedding[word] = cbow.wv[word]
embeddings.append(np.mean(cbow.wv[word], axis=0))
embedding_dict[word] = np.mean(cbow.wv[word], axis=0)
X = embeddings
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,stratify=y)
# print(embeddings)
# print(vocab_len)
# X_train_vect_avg = []
# for v in X_train_vect:
# if v.size:
# X_train_vect_avg.append(v.mean(axis=0))
# else:
# X_train_vect_avg.append(np.zeros(100, dtype=float))
# X_test_vect_avg = []
# for v in X_test_vect:
# if v.size:
# X_test_vect_avg.append(v.mean(axis=0))
# else:
# X_test_vect_avg.append(np.zeros(100, dtype=float))
# # for i, v in enumerate(X_train_vect_avg):
# # print(len(data.iloc[i]), len(v))
# x_0 = X_train_vect_avg[0]
# num_files_per_class = 100
# y = [1] * num_files_per_class + [0] * num_files_per_class
# w = np.zeros(X_train_vect_avg.shape[1])
# x_0_dense = x_0.todense()
# x_0.dot(w)
# w,b = sgd_for_lr_with_ce(X_train_vect_avg, y)
# w
# sorted_vocab = sorted([(k,v) for k,v in enumerate(embedding_dict)],key=lambda x:x[1])
# sorted_vocab = [a for (a,b) in sorted_vocab]
# sorted_words_weights = sorted([x for x in zip(sorted_vocab, w)], key=lambda x:x[1])
# sorted_words_weights[-50:]
# preds = predict_y_lr(w,b,X_train_vect_avg)
# preds
# w,b = sgd_for_lr_with_ce(X_train_vect_avg, y, num_passes=10)
# y_pred = predict_y_lr(w,b,X_train_vect_avg)
# print(classification_report(y, y_pred))
# # compute for dev set
# pos_dev_files = glob.glob('aclImdb/test/pos/*')
# neg_dev_files = glob.glob('aclImdb/test/neg/*')
# num_dev_files_per_class = 100
# all_dev_files = pos_dev_files[:num_dev_files_per_class] + neg_dev_files[:num_dev_files_per_class]
# # use the same vectorizer from before! otherwise features won't line up
# # don't fit it again, just use it to transform!
# # X_dev = vectorizer.transform(all_dev_files)
# # y_dev = [1]* num_dev_files_per_class + [0]* num_dev_files_per_class
# # # don't need new w and b, these are from out existing model
# # y_dev_pred = predict_y_lr(w,b,X_dev)
# # print(classification_report(y_dev, y_dev_pred))
def sgd_for_lr_with_ce(X, y, num_passes=5, learning_rate = 0.1):
num_data_points = X.shape[0]
# Initialize theta -> 0
num_features = X.shape[1]
w = np.zeros(num_features)
b = 0.0
# repeat until done
# how to define "done"? let's just make it num passes for now
# we can also do norm of gradient and when it is < epsilon (something tiny)
# we stop
for current_pass in range(num_passes):
# iterate through entire dataset in random order
order = list(range(num_data_points))
random.shuffle(order)
for i in order:
# compute y-hat for this value of i given y_i and x_i
x_i = X[i]
y_i = y[i]
# need to compute based on w and b
# sigmoid(w dot x + b)
z = x_i.dot(w) + b
y_hat_i = expit(z)
# for each w (and b), modify by -lr * (y_hat_i - y_i) * x_i
w = w - learning_rate * (y_hat_i - y_i) * x_i
b = b - learning_rate * (y_hat_i - y_i)
# return theta
return w,b
def predict_y_lr(w,b,X,threshold=0.5):
# use our matrix operation version of the logistic regression model
# X dot w + b
# need to make w a column vector so the dimensions line up correctly
y_hat = X.dot( w.reshape((-1,1)) ) + b
# then just check if it's > threshold
preds = np.where(y_hat > threshold,1,0)
return preds
def main():
parser = argparse.ArgumentParser(
prog='word_embedding',
description='This program will train a word embedding model using simple wikipedia.',
epilog='To skip training the model and to used the saved model "word2vec.model", use the command --skip or -s.'
)
parser.add_argument('-s', '--skip', action='store_true')
parser.add_argument('-e', '--extra', action='store_true')
parser.add_argument('-b', '--bias', action='store_true')
parser.add_argument('-c', '--compare', action='store_true')
parser.add_argument('-t', '--text', action='store_true')
args = parser.parse_args()
skip_model = None
cbow_model = None
ud_model = None
wiki_model = None
if args.compare:
if args.skip:
# print("Skipping")
cbow_model = Word2Vec.load("word2vec.model")
skip_model = Word2Vec.load("skip2vec.model")
ud_model = KeyedVectors.load("urban2vec.model")
wiki_model = KeyedVectors.load("wiki2vec.model")
elif args.extra:
# print("Extra mode")
cbow_model = Word2Vec.load("word2vec.model")
skip_model = Word2Vec.load("skip2vec.model")
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False)
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False)
wiki_model.save("wiki2vec.model")
ud_model.save("urban2vec.model")
else:
cbow_model, skip_model = train_embeddings()
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False)
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False)
wiki_model.save("wiki2vec.model")
ud_model.save("urban2vec.model")
compare_embeddings(cbow_model, skip_model, ud_model, wiki_model)
if args.bias:
if args.skip:
# print("Skipping")
cbow_model = Word2Vec.load("word2vec.model")
skip_model = Word2Vec.load("skip2vec.model")
ud_model = KeyedVectors.load("urban2vec.model")
wiki_model = KeyedVectors.load("wiki2vec.model")
elif args.extra:
# print("Extra mode")
cbow_model = Word2Vec.load("word2vec.model")
skip_model = Word2Vec.load("skip2vec.model")
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False)
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False)
wiki_model.save("wiki2vec.model")
ud_model.save("urban2vec.model")
else:
cbow_model, skip_model = train_embeddings()
wiki_model = KeyedVectors.load_word2vec_format("wiki-news-300d-1M-subwords.vec", binary=False)
ud_model = KeyedVectors.load_word2vec_format("ud_basic.vec", binary=False)
wiki_model.save("wiki2vec.model")
ud_model.save("urban2vec.model")
quantify_bias(cbow_model, skip_model, ud_model, wiki_model)
if args.text:
if args.skip:
# print("Skipping")
cbow_model = Word2Vec.load("word2vec.model")
else:
cbow_model, skip_model = train_embeddings()
text_classifier(cbow_model)
# data, sents = get_data()
# cbow_classifier(cbow_model, data, sents)
# print("No errors?")
if __name__ == "__main__":
main() |