Spaces:
Sleeping
Sleeping
File size: 9,300 Bytes
e369cb0 96d7c96 e369cb0 fd49958 0473071 e369cb0 fd49958 0473071 96d7c96 458c097 0473071 458c097 9be73ed 0473071 96d7c96 f74421e 96d7c96 e369cb0 5d26793 b7302f3 3854d90 e369cb0 05a2e2d e369cb0 96d7c96 0473071 69ae466 0473071 05a2e2d dc0c8b8 bfc9cbd fd49958 0473071 bfc9cbd 413574b bfc9cbd 7a2e05d fd49958 0473071 96d7c96 69ae466 96d7c96 69ae466 fd49958 96d7c96 fd49958 96d7c96 f4440c5 5503f0a 20042af 0473071 20042af 5503f0a 20042af f4440c5 20042af f4440c5 20042af f4440c5 20042af f4440c5 20042af fd49958 247c86d 0473071 4dec182 fd94d05 fd49958 940deb0 2c3c9f7 bfc9cbd 0473071 e369cb0 fd49958 7a2e05d 0473071 7a2e05d 0473071 fe56f10 fd49958 4dec182 fd49958 0473071 9be73ed 7495c36 9be73ed 0473071 fd49958 0473071 fd49958 0473071 fd49958 0473071 05a2e2d e369cb0 0473071 05a2e2d e369cb0 05a2e2d e369cb0 05a2e2d fd49958 e369cb0 05a2e2d e369cb0 05a2e2d e369cb0 05a2e2d e369cb0 05a2e2d e369cb0 05a2e2d 2c3c9f7 0473071 e369cb0 3854d90 b7302f3 34d084e cfd2220 f47dc44 cfd2220 ba7e072 cfd2220 ba7e072 cfd2220 e369cb0 05a2e2d ba7e072 b7302f3 ba7e072 e22b7aa ba7e072 2c3c9f7 5d26793 ba7e072 3ed7c05 ba7e072 a87b166 2c3c9f7 a87b166 ba7e072 05a2e2d 7a2e05d 2c3c9f7 05a2e2d e369cb0 05a2e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import gradio as gr
import math
import spacy
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers import InputExample
from sentence_transformers import losses
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
# answer = "Pizza"
guesses = []
answer = "Pizza"
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def normalize(comment, lowercase, remove_stopwords):
if lowercase:
comment = comment.lower()
comment = nlp(comment)
lemmatized = list()
for word in comment:
lemma = word.lemma_.strip()
if lemma:
if not remove_stopwords or (remove_stopwords and lemma not in stops):
lemmatized.append(lemma)
return " ".join(lemmatized)
def tokenize_function(examples):
return tokenizer(examples["text"])
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
metric = evaluate.load("accuracy")
return metric.compute(predictions=predictions, references=labels)
def training():
dataset_id = "ag_news"
dataset = load_dataset(dataset_id)
# dataset = dataset["train"]
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0]['text'])} as value.")
print(f"- Examples look like this: {dataset['train'][0]}")
# small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
# small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
# dataset = dataset["train"].map(tokenize_function, batched=True)
# dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
# dataset.format['type']
# print(dataset)
train_examples = []
train_data = dataset["train"]
# For agility we only 1/2 of our available data
n_examples = dataset["train"].num_rows // 2
# n_remaining = dataset["train"].num_rows - n_examples
# dataset_clean = {}
# # dataset_0 = []
# # dataset_1 = []
# # dataset_2 = []
# # dataset_3 = []
# for i in range(n_examples):
# dataset_clean[i] = {}
# dataset_clean[i]["text"] = normalize(train_data[i]["text"], lowercase=True, remove_stopwords=True)
# dataset_clean[i]["label"] = train_data[i]["label"]
# if train_data[i]["label"] == 0:
# dataset_0.append(dataset_clean[i])
# elif train_data[i]["label"] == 1:
# dataset_1.append(dataset_clean[i])
# elif train_data[i]["label"] == 2:
# dataset_2.append(dataset_clean[i])
# elif train_data[i]["label"] == 3:
# dataset_3.append(dataset_clean[i])
# n_0 = len(dataset_0) // 2
# n_1 = len(dataset_1) // 2
# n_2 = len(dataset_2) // 2
# n_3 = len(dataset_3) // 2
# print("Label lengths:", len(dataset_0), len(dataset_1), len(dataset_2), len(dataset_3))
for i in range(n_examples):
example = train_data[i]
# example_opposite = dataset_clean[-(i)]
# print(example["text"])
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
# for i in range(n_0):
# example = dataset_0[i]
# # example_opposite = dataset_0[-(i)]
# # print(example["text"])
# train_examples.append(InputExample(texts=[example['text']], label=0))
# for i in range(n_1):
# example = dataset_1[i]
# # example_opposite = dataset_1[-(i)]
# # print(example["text"])
# train_examples.append(InputExample(texts=[example['text']], label=1))
# for i in range(n_2):
# example = dataset_2[i]
# # example_opposite = dataset_2[-(i)]
# # print(example["text"])
# train_examples.append(InputExample(texts=[example['text']], label=2))
# for i in range(n_3):
# example = dataset_3[i]
# # example_opposite = dataset_3[-(i)]
# # print(example["text"])
# train_examples.append(InputExample(texts=[example['text']], label=3))
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
print("END DATALOADER")
# print(train_examples)
embeddings = finetune(train_dataloader)
return (dataset['train'].num_rows, type(dataset['train'][0]), type(dataset['train'][0]['text']), dataset['train'][0], embeddings)
def finetune(train_dataloader):
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
model_id = "sentence-transformers/all-MiniLM-L6-v2"
model = SentenceTransformer(model_id)
# training_args = TrainingArguments(output_dir="test_trainer")
# USE THIS LINK
# https://huggingface.co/blog/how-to-train-sentence-transformers
train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
print("BEGIN FIT")
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
model.save("ag_news_model")
model.save_to_hub("smhavens/all-MiniLM-agNews")
# accuracy = compute_metrics(eval, metric)
# training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=train,
# eval_dataset=eval,
# compute_metrics=compute_metrics,
# )
# trainer.train()
sentences = ["This is an example sentence", "Each sentence is converted"]
# model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
return sentence_embeddings
def greet(name):
return "Hello " + name + "!!"
def check_answer(guess:str):
global guesses
global answer
guesses.append(guess)
output = ""
for guess in guesses:
output += ("- " + guess + "\n")
output = output[:-1]
if guess.lower() == answer.lower():
return "Correct!", output
else:
return "Try again!", output
def main():
word1 = "Black"
word2 = "White"
word3 = "Sun"
global answer
answer = "Moon"
global guesses
num_rows, data_type, value, example, embeddings = training()
prompt = f"{word1} is to {word2} as {word3} is to ____"
with gr.Blocks() as iface:
gr.Markdown(prompt)
with gr.Tab("Guess"):
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("Submit")
with gr.Accordion("Open for previous guesses"):
text_guesses = gr.Textbox()
with gr.Tab("Testing"):
gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}.
An example is {example}.
The Embeddings are {embeddings}.""")
text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
if __name__ == "__main__":
main() |