File size: 11,087 Bytes
ec3e101
 
 
 
 
 
 
3922a86
 
ec3e101
 
 
 
 
 
 
 
 
 
 
3922a86
ec3e101
 
69a3ce1
ec3e101
 
 
 
3922a86
 
 
 
 
 
ec3e101
 
 
3922a86
 
 
 
 
ec3e101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3922a86
 
 
ec3e101
 
3922a86
 
 
 
 
 
 
 
 
ec3e101
3922a86
 
 
 
ec3e101
3922a86
 
 
ec3e101
 
3922a86
ec3e101
3922a86
 
 
 
ec3e101
 
 
 
 
 
 
 
 
 
 
3922a86
 
ec3e101
3922a86
 
 
 
 
ec3e101
 
 
 
 
 
 
3922a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3e101
 
 
 
 
 
 
 
3922a86
 
ec3e101
3922a86
 
 
 
 
 
 
 
 
 
ec3e101
3922a86
ec3e101
3922a86
 
ec3e101
 
3922a86
ec3e101
 
 
3922a86
 
 
ec3e101
3922a86
ec3e101
 
3922a86
ec3e101
3922a86
 
 
ec3e101
 
3922a86
 
ec3e101
 
 
 
 
 
 
 
3922a86
 
ec3e101
 
 
 
 
 
 
 
 
05a2e2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import gradio as gr
import math
import spacy
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers import InputExample
from sentence_transformers import losses
from sentence_transformers import util
from transformers import pipeline
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
import random

# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
ROMAN_CONSTANTS = (
            ( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
            ( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
            ( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
            ( "", "M", "MM", "MMM", "",   "",  "-",  "",    "",     ""   ),
        )

# answer = "Pizza"
guesses = []
return_guesses = []
answer = "Moon"
word1 = "Black"
word2 = "White"
word3 = "Sun"


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


def normalize(comment, lowercase, remove_stopwords):
    if lowercase:
        comment = comment.lower()
    comment = nlp(comment)
    lemmatized = list()
    for word in comment:
        lemma = word.lemma_.strip()
        if lemma:
            if not remove_stopwords or (remove_stopwords and lemma not in stops):
                lemmatized.append(lemma)
    return " ".join(lemmatized)


# def tokenize_function(examples):
#     return tokenizer(examples["text"])


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    metric = evaluate.load("accuracy")
    return metric.compute(predictions=predictions, references=labels)


def training():
    dataset_id = "ag_news"
    dataset = load_dataset(dataset_id)
    # dataset = dataset["train"]
    # tokenized_datasets = dataset.map(tokenize_function, batched=True)
    
    print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
    print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0]['text'])} as value.")
    print(f"- Examples look like this: {dataset['train'][0]}")
    
    # small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
    # small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
    
    # dataset = dataset["train"].map(tokenize_function, batched=True)
    # dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
    # dataset.format['type']
    
    # print(dataset)
    
    train_examples = []
    train_data = dataset["train"]
    # For agility we only 1/2 of our available data
    n_examples = dataset["train"].num_rows // 2
    
    for i in range(n_examples):
        example = train_data[i]
        # example_opposite = dataset_clean[-(i)]
        # print(example["text"])
        train_examples.append(InputExample(texts=[example['text']], label=example['label']))
        
    train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
    
    print("END DATALOADER")
    
    # print(train_examples)
        
    embeddings = finetune(train_dataloader)
    
    return (dataset['train'].num_rows, type(dataset['train'][0]), type(dataset['train'][0]['text']), dataset['train'][0], embeddings)


def finetune(train_dataloader):
    # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
    model_id = "sentence-transformers/all-MiniLM-L6-v2"
    model = SentenceTransformer(model_id)
    
    # training_args = TrainingArguments(output_dir="test_trainer")
    
    # USE THIS LINK
    # https://huggingface.co/blog/how-to-train-sentence-transformers
    
    train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
    
    print("BEGIN FIT")
    
    model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
    
    model.save("ag_news_model")
    
    model.save_to_hub("smhavens/all-MiniLM-agNews")
    # accuracy = compute_metrics(eval, metric)
    
    # training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
    
    # trainer = Trainer(
    #     model=model,
    #     args=training_args,
    #     train_dataset=train,
    #     eval_dataset=eval,
    #     compute_metrics=compute_metrics,
    # )
    
    # trainer.train()
    
    
def get_model():
    model = SentenceTransformer("bert-analogies")
    device = torch.device('cuda:0')
    model = model.to(device)
    return model


def cosine_scores(model, sentence):
    global word1
    global word2
    global word3
    # sentence1 = f"{word1} is to {word2} as"
    embeddings1 = model.encode(sentence, convert_to_tensor=True)

def embeddings(model, sentences):
    gpu_available = torch.cuda.is_available()
    device = torch.device("cuda" if gpu_available else "cpu")
    # device = torch.device('cuda:0')
    embeddings = model.encode(sentences)
    global word1
    global word2
    global word3

    # Load model from HuggingFace Hub
    tokenizer = AutoTokenizer.from_pretrained('bert-analogies')
    encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
    token_ids = tokenizer.encode(sentences, return_tensors='pt')
    blank_id = tokenizer.mask_token_id
    blank_id_idx = torch.where(encoded_input["input_ids"] == blank_id)[1]
    
    encoded_input["input_ids"] = encoded_input["input_ids"].to(device)
    encoded_input["attention_mask"] = encoded_input["attention_mask"].to(device)
    encoded_input['token_type_ids'] = encoded_input['token_type_ids'].to(device)
    
    encoded_input['input'] = {'input_ids':encoded_input['input_ids'], 'attention_mask':encoded_input['attention_mask']}
    
    del encoded_input['input_ids']
    del encoded_input['token_type_ids']
    del encoded_input['attention_mask']

    with torch.no_grad():
        # output = model(encoded_input)
        print(encoded_input)
        model_output = model(**encoded_input)
        # output = model(encoded_input_topk)
    
    unmasker = pipeline('fill-mask', model='bert-analogies')
    guesses = unmasker(sentences)
    print(guesses)

    # Perform pooling
    sentence_embeddings = mean_pooling(model_output, encoded_input['input']["attention_mask"])

    # Normalize embeddings
    sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)

    potential_words = []
    for guess in guesses:
        temp_word = guess['token_str']
        if temp_word[0].isalpha() and temp_word not in stops and temp_word not in ROMAN_CONSTANTS:
            potential_words.append(guess['token_str'])

    return potential_words


def random_word():
    with open('ag_news_model/vocab.txt', 'r') as file:
        line = ""
        content = file.readlines()
        length = len(content)
        while line == "":
            rand_line = random.randrange(1997, length)
            
            if content[rand_line][0].isalpha() and content[rand_line][:-1] not in stops and content[rand_line][:-1] not in ROMAN_CONSTANTS:
                line = content[rand_line]
            else:
                print(f"{content[rand_line]} is not alpha or is a stop word")
        # for num, aline in enumerate(file, 1997):
        #     if random.randrange(num) and aline.isalpha():
        #         continue
        #     # elif not aline.isalpha():
                
        #     line = aline
    print(line)
    return line[:-1]


def generate_prompt(model):
    global word1
    global word2
    global word3
    global answer
    word1 = random_word()
    word2 = random_word()
    word3 = random_word()
    sentence = f"{word1} is to {word2} as {word3} is to [MASK]"
    print(sentence)
    answer = embeddings(model, sentence)[0]
    print("ANSWER IS", answer)
    # cosine_scores(model, sentence)


def greet(name):
    return "Hello " + name + "!!"

def check_answer(guess:str):
    global guesses
    global answer
    global return_guesses
    model = get_model()
    output = ""
    protected_guess = guess
    sentence = f"{word1} is to {word2} as [MASK] is to {guess}"
    other_word = embeddings(model, sentence)[0]
    guesses.append(guess)
    print("GUESS IS", guess)
    return_guess = f"{guess}: {word1} is to {word2} as {other_word} is to {guess}"
    print("GUESS IS", guess)
    return_guesses.append(return_guess)
    for guess in return_guesses:
        output += (guess + "\n")
    output = output[:-1]
    print("GUESS IS", protected_guess)
    
    print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
    if protected_guess.lower() == answer.lower():
        return "Correct!", output
    else:
        
        return "Try again!", output

def main():
    global word1
    global word2
    global word3
    global answer
    # answer = "Moon"
    global guesses
    
    
    # num_rows, data_type, value, example, embeddings = training()
    # sent_embeddings = embeddings()
    model = get_model() 
    generate_prompt(model)
    
    prompt = f"{word1} is to {word2} as {word3} is to ____"
    print(prompt)
    print("TESTING EMBEDDINGS")
    with gr.Blocks() as iface:
        gr.Markdown(prompt)
        with gr.Tab("Guess"):
            text_input = gr.Textbox()
            text_output = gr.Textbox()
            text_button = gr.Button("Submit")
        with gr.Accordion("Open for previous guesses"):
            text_guesses = gr.Textbox()
        # with gr.Tab("Testing"):
        #     gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
        text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
    # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
    iface.launch()
    
    


    
if __name__ == "__main__":
    main()