Spaces:
Sleeping
Sleeping
File size: 11,087 Bytes
ec3e101 3922a86 ec3e101 3922a86 ec3e101 69a3ce1 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 3922a86 ec3e101 05a2e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import math
import spacy
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers import InputExample
from sentence_transformers import losses
from sentence_transformers import util
from transformers import pipeline
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
import random
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
ROMAN_CONSTANTS = (
( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
( "", "M", "MM", "MMM", "", "", "-", "", "", "" ),
)
# answer = "Pizza"
guesses = []
return_guesses = []
answer = "Moon"
word1 = "Black"
word2 = "White"
word3 = "Sun"
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def normalize(comment, lowercase, remove_stopwords):
if lowercase:
comment = comment.lower()
comment = nlp(comment)
lemmatized = list()
for word in comment:
lemma = word.lemma_.strip()
if lemma:
if not remove_stopwords or (remove_stopwords and lemma not in stops):
lemmatized.append(lemma)
return " ".join(lemmatized)
# def tokenize_function(examples):
# return tokenizer(examples["text"])
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
metric = evaluate.load("accuracy")
return metric.compute(predictions=predictions, references=labels)
def training():
dataset_id = "ag_news"
dataset = load_dataset(dataset_id)
# dataset = dataset["train"]
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0]['text'])} as value.")
print(f"- Examples look like this: {dataset['train'][0]}")
# small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
# small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
# dataset = dataset["train"].map(tokenize_function, batched=True)
# dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
# dataset.format['type']
# print(dataset)
train_examples = []
train_data = dataset["train"]
# For agility we only 1/2 of our available data
n_examples = dataset["train"].num_rows // 2
for i in range(n_examples):
example = train_data[i]
# example_opposite = dataset_clean[-(i)]
# print(example["text"])
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
print("END DATALOADER")
# print(train_examples)
embeddings = finetune(train_dataloader)
return (dataset['train'].num_rows, type(dataset['train'][0]), type(dataset['train'][0]['text']), dataset['train'][0], embeddings)
def finetune(train_dataloader):
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
model_id = "sentence-transformers/all-MiniLM-L6-v2"
model = SentenceTransformer(model_id)
# training_args = TrainingArguments(output_dir="test_trainer")
# USE THIS LINK
# https://huggingface.co/blog/how-to-train-sentence-transformers
train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
print("BEGIN FIT")
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
model.save("ag_news_model")
model.save_to_hub("smhavens/all-MiniLM-agNews")
# accuracy = compute_metrics(eval, metric)
# training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=train,
# eval_dataset=eval,
# compute_metrics=compute_metrics,
# )
# trainer.train()
def get_model():
model = SentenceTransformer("bert-analogies")
device = torch.device('cuda:0')
model = model.to(device)
return model
def cosine_scores(model, sentence):
global word1
global word2
global word3
# sentence1 = f"{word1} is to {word2} as"
embeddings1 = model.encode(sentence, convert_to_tensor=True)
def embeddings(model, sentences):
gpu_available = torch.cuda.is_available()
device = torch.device("cuda" if gpu_available else "cpu")
# device = torch.device('cuda:0')
embeddings = model.encode(sentences)
global word1
global word2
global word3
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('bert-analogies')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
token_ids = tokenizer.encode(sentences, return_tensors='pt')
blank_id = tokenizer.mask_token_id
blank_id_idx = torch.where(encoded_input["input_ids"] == blank_id)[1]
encoded_input["input_ids"] = encoded_input["input_ids"].to(device)
encoded_input["attention_mask"] = encoded_input["attention_mask"].to(device)
encoded_input['token_type_ids'] = encoded_input['token_type_ids'].to(device)
encoded_input['input'] = {'input_ids':encoded_input['input_ids'], 'attention_mask':encoded_input['attention_mask']}
del encoded_input['input_ids']
del encoded_input['token_type_ids']
del encoded_input['attention_mask']
with torch.no_grad():
# output = model(encoded_input)
print(encoded_input)
model_output = model(**encoded_input)
# output = model(encoded_input_topk)
unmasker = pipeline('fill-mask', model='bert-analogies')
guesses = unmasker(sentences)
print(guesses)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['input']["attention_mask"])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
potential_words = []
for guess in guesses:
temp_word = guess['token_str']
if temp_word[0].isalpha() and temp_word not in stops and temp_word not in ROMAN_CONSTANTS:
potential_words.append(guess['token_str'])
return potential_words
def random_word():
with open('ag_news_model/vocab.txt', 'r') as file:
line = ""
content = file.readlines()
length = len(content)
while line == "":
rand_line = random.randrange(1997, length)
if content[rand_line][0].isalpha() and content[rand_line][:-1] not in stops and content[rand_line][:-1] not in ROMAN_CONSTANTS:
line = content[rand_line]
else:
print(f"{content[rand_line]} is not alpha or is a stop word")
# for num, aline in enumerate(file, 1997):
# if random.randrange(num) and aline.isalpha():
# continue
# # elif not aline.isalpha():
# line = aline
print(line)
return line[:-1]
def generate_prompt(model):
global word1
global word2
global word3
global answer
word1 = random_word()
word2 = random_word()
word3 = random_word()
sentence = f"{word1} is to {word2} as {word3} is to [MASK]"
print(sentence)
answer = embeddings(model, sentence)[0]
print("ANSWER IS", answer)
# cosine_scores(model, sentence)
def greet(name):
return "Hello " + name + "!!"
def check_answer(guess:str):
global guesses
global answer
global return_guesses
model = get_model()
output = ""
protected_guess = guess
sentence = f"{word1} is to {word2} as [MASK] is to {guess}"
other_word = embeddings(model, sentence)[0]
guesses.append(guess)
print("GUESS IS", guess)
return_guess = f"{guess}: {word1} is to {word2} as {other_word} is to {guess}"
print("GUESS IS", guess)
return_guesses.append(return_guess)
for guess in return_guesses:
output += (guess + "\n")
output = output[:-1]
print("GUESS IS", protected_guess)
print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
if protected_guess.lower() == answer.lower():
return "Correct!", output
else:
return "Try again!", output
def main():
global word1
global word2
global word3
global answer
# answer = "Moon"
global guesses
# num_rows, data_type, value, example, embeddings = training()
# sent_embeddings = embeddings()
model = get_model()
generate_prompt(model)
prompt = f"{word1} is to {word2} as {word3} is to ____"
print(prompt)
print("TESTING EMBEDDINGS")
with gr.Blocks() as iface:
gr.Markdown(prompt)
with gr.Tab("Guess"):
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("Submit")
with gr.Accordion("Open for previous guesses"):
text_guesses = gr.Textbox()
# with gr.Tab("Testing"):
# gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
if __name__ == "__main__":
main() |