File size: 13,375 Bytes
e3596d7 a503c73 096dbd4 d3cddbc 096dbd4 ae95de2 548dd69 10d3a03 9e02e2e ae95de2 096dbd4 b73bb4c ae95de2 b73bb4c ae95de2 b73bb4c ae95de2 b73bb4c ae95de2 b73bb4c ae95de2 e3596d7 ae95de2 096dbd4 ae95de2 096dbd4 ae95de2 3eec23c b73bb4c 3eec23c b73bb4c 3eec23c b73bb4c 3eec23c b73bb4c 3eec23c f203c17 b73bb4c f203c17 548dd69 b73bb4c 9e02e2e 6232328 ae95de2 a503c73 096dbd4 a503c73 2ceda68 096dbd4 a503c73 096dbd4 a503c73 ae95de2 e3596d7 ae95de2 b73bb4c ee90599 b73bb4c 45eb20f b73bb4c 548dd69 f203c17 10d3a03 4a5e212 da88775 4a5e212 b73bb4c 10d3a03 4a5e212 b73bb4c f30c15c ae95de2 096dbd4 b73bb4c 096dbd4 b73bb4c ae95de2 568f598 ae95de2 995e6d1 ae95de2 995e6d1 ae95de2 568f598 f2a8ecd b73bb4c ae95de2 568f598 ae95de2 568f598 ae95de2 ec67b57 0081309 568f598 b73bb4c 568f598 ae95de2 ec67b57 b73bb4c ec67b57 b73bb4c ec67b57 ae95de2 548dd69 f203c17 7164dd1 d3cddbc b73bb4c d3cddbc b73bb4c ae95de2 d3cddbc 096dbd4 a503c73 ae95de2 10d3a03 b73bb4c 4a5e212 b73bb4c 4a5e212 b73bb4c 4a5e212 548dd69 f203c17 7164dd1 b73bb4c 4a5e212 b73bb4c 4a5e212 b73bb4c 8eb01dc 4a5e212 8eb01dc 4a5e212 b73bb4c 4a5e212 f935da6 4a5e212 ae95de2 096dbd4 ae95de2 b9c5d81 ae95de2 b73bb4c 096dbd4 ae95de2 faf18e1 ae95de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import os
import json
import uuid
from datetime import datetime
from flask import Flask, request, Response, jsonify
import socketio
import requests
import logging
from threading import Event
import tiktoken # 引入 tiktoken 库
def local_encoding_for_model(model_name: str):
local_encoding_path = '/app/cl100k_base.tiktoken'
if os.path.exists(local_encoding_path):
with open(local_encoding_path, 'rb') as f:
return f.read() # 返回本地编码文件的内容
else:
raise FileNotFoundError(f"Local encoding file not found at {local_encoding_path}")
tiktoken.encoding_for_model = local_encoding_for_model
app = Flask(__name__)
logging.basicConfig(level=logging.INFO)
# 从环境变量中获取API密钥
API_KEY = os.environ.get('PPLX_KEY')
# 代理设置
proxy_url = os.environ.get('PROXY_URL')
# 设置代理
if proxy_url:
proxies = {
'http': proxy_url,
'https': proxy_url
}
transport = requests.Session()
transport.proxies.update(proxies)
else:
transport = None
sio = socketio.Client(http_session=transport, logger=True, engineio_logger=True)
# 连接选项
connect_opts = {
'transports': ['websocket', 'polling'], # 允许回退到轮询
}
# 其他选项
sio_opts = {
'extraHeaders': {
'Cookie': os.environ.get('PPLX_COOKIE'),
'User-Agent': os.environ.get('USER_AGENT'),
'Accept': '*/*',
'priority': 'u=1, i',
'Referer': 'https://www.perplexity.ai/',
}
}
def log_request(ip, route, status):
timestamp = datetime.now().isoformat()
logging.info(f"{timestamp} - {ip} - {route} - {status}")
def validate_api_key():
api_key = request.headers.get('x-api-key')
if api_key != API_KEY:
log_request(request.remote_addr, request.path, 401)
return jsonify({"error": "Invalid API key"}), 401
return None
def normalize_content(content):
"""
递归处理 msg['content'],确保其为字符串。
如果 content 是字典或列表,将其转换为字符串。
"""
if isinstance(content, str):
return content
elif isinstance(content, dict):
# 将字典转化为 JSON 字符串
return json.dumps(content, ensure_ascii=False)
elif isinstance(content, list):
# 对于列表,递归处理每个元素
return " ".join([normalize_content(item) for item in content])
else:
# 如果是其他类型,返回空字符串
return ""
def calculate_tokens_via_tiktoken(text, model="gpt-3.5-turbo"):
"""
使用 tiktoken 库根据 GPT 模型计算 token 数量。
Claude 模型与 GPT 模型的 token 计算机制类似,因此可以使用 tiktoken。
"""
encoding = tiktoken.encoding_for_model(model) # 获取模型的编码器
tokens = encoding.encode(text) # 对文本进行 tokenization
return len(tokens)
@app.route('/')
def root():
log_request(request.remote_addr, request.path, 200)
return jsonify({
"message": "Welcome to the Perplexity AI Proxy API",
"endpoints": {
"/ai/v1/messages": {
"method": "POST",
"description": "Send a message to the AI",
"headers": {
"x-api-key": "Your API key (required)",
"Content-Type": "application/json"
},
"body": {
"messages": "Array of message objects",
"stream": "Boolean (true for streaming response)",
"model": "Model to be used (optional, defaults to claude-3-opus-20240229)"
}
}
}
})
@app.route('/ai/v1/messages', methods=['POST'])
def messages():
auth_error = validate_api_key()
if auth_error:
return auth_error
try:
json_body = request.json
model = json_body.get('model', 'claude-3-opus-20240229') # 动态获取模型,默认 claude-3-opus-20240229
stream = json_body.get('stream', True) # 默认为True
# 使用 normalize_content 递归处理 msg['content']
previous_messages = "\n\n".join([normalize_content(msg['content']) for msg in json_body['messages']])
# 动态计算输入的 token 数量,使用 tiktoken 进行 tokenization
input_tokens = calculate_tokens_via_tiktoken(previous_messages, model="gpt-3.5-turbo")
msg_id = str(uuid.uuid4())
response_event = Event()
response_text = []
if not stream:
# 处理 stream 为 false 的情况
return handle_non_stream(previous_messages, msg_id, model, input_tokens)
# 记录日志:此时请求上下文仍然有效
log_request(request.remote_addr, request.path, 200)
def generate():
yield create_event("message_start", {
"type": "message_start",
"message": {
"id": msg_id,
"type": "message",
"role": "assistant",
"content": [],
"model": model, # 动态模型
"stop_reason": None,
"stop_sequence": None,
"usage": {"input_tokens": input_tokens, "output_tokens": 1}, # 动态 input_tokens
},
})
yield create_event("content_block_start", {"type": "content_block_start", "index": 0, "content_block": {"type": "text", "text": ""}})
yield create_event("ping", {"type": "ping"})
def on_connect():
logging.info("Connected to Perplexity AI")
emit_data = {
"version": "2.9",
"source": "default",
"attachments": [],
"language": "en-GB",
"timezone": "Europe/London",
"mode": "concise",
"is_related_query": False,
"is_default_related_query": False,
"visitor_id": str(uuid.uuid4()),
"frontend_context_uuid": str(uuid.uuid4()),
"prompt_source": "user",
"query_source": "home"
}
sio.emit('perplexity_ask', (previous_messages, emit_data))
def on_query_progress(data):
nonlocal response_text
if 'text' in data:
text = json.loads(data['text'])
chunk = text['chunks'][-1] if text['chunks'] else None
if chunk:
response_text.append(chunk)
# 检查是否是最终响应
if data.get('final', False):
response_event.set()
def on_query_complete(data):
response_event.set()
def on_disconnect():
logging.info("Disconnected from Perplexity AI")
response_event.set()
def on_connect_error(data):
logging.error(f"Connection error: {data}")
response_text.append(f"Error connecting to Perplexity AI: {data}")
response_event.set()
sio.on('connect', on_connect)
sio.on('query_progress', on_query_progress)
sio.on('query_complete', on_query_complete)
sio.on('disconnect', on_disconnect)
sio.on('connect_error', on_connect_error)
try:
sio.connect('wss://www.perplexity.ai/', **connect_opts, headers=sio_opts['extraHeaders'])
while not response_event.is_set():
sio.sleep(0.1)
while response_text:
chunk = response_text.pop(0)
yield create_event("content_block_delta", {
"type": "content_block_delta",
"index": 0,
"delta": {"type": "text_delta", "text": chunk},
})
except Exception as e:
logging.error(f"Error during socket connection: {str(e)}")
yield create_event("content_block_delta", {
"type": "content_block_delta",
"index": 0,
"delta": {"type": "text_delta", "text": f"Error during socket connection: {str(e)}"},
})
finally:
if sio.connected:
sio.disconnect()
# 动态计算输出的 token 数量,使用 tiktoken 进行 tokenization
output_tokens = calculate_tokens_via_tiktoken(''.join(response_text), model="gpt-3.5-turbo")
yield create_event("content_block_stop", {"type": "content_block_stop", "index": 0})
yield create_event("message_delta", {
"type": "message_delta",
"delta": {"stop_reason": "end_turn", "stop_sequence": None},
"usage": {"input_tokens": input_tokens, "output_tokens": output_tokens}, # 动态 output_tokens
})
yield create_event("message_stop", {"type": "message_stop"}) # 确保发送 message_stop 事件
return Response(generate(), content_type='text/event-stream')
except Exception as e:
logging.error(f"Request error: {str(e)}")
log_request(request.remote_addr, request.path, 400)
return jsonify({"error": str(e)}), 400
def handle_non_stream(previous_messages, msg_id, model, input_tokens):
"""
处理 stream 为 false 的情况,返回完整的响应。
"""
try:
response_event = Event()
response_text = []
def on_connect():
logging.info("Connected to Perplexity AI")
emit_data = {
"version": "2.9",
"source": "default",
"attachments": [],
"language": "en-GB",
"timezone": "Europe/London",
"mode": "concise",
"is_related_query": False,
"is_default_related_query": False,
"visitor_id": str(uuid.uuid4()),
"frontend_context_uuid": str(uuid.uuid4()),
"prompt_source": "user",
"query_source": "home"
}
sio.emit('perplexity_ask', (previous_messages, emit_data))
def on_query_progress(data):
nonlocal response_text
if 'text' in data:
text = json.loads(data['text'])
chunk = text['chunks'][-1] if text['chunks'] else None
if chunk:
response_text.append(chunk)
# 检查是否是最终响应
if data.get('final', False):
response_event.set()
def on_disconnect():
logging.info("Disconnected from Perplexity AI")
response_event.set()
def on_connect_error(data):
logging.error(f"Connection error: {data}")
response_text.append(f"Error connecting to Perplexity AI: {data}")
response_event.set()
sio.on('connect', on_connect)
sio.on('query_progress', on_query_progress)
sio.on('disconnect', on_disconnect)
sio.on('connect_error', on_connect_error)
sio.connect('wss://www.perplexity.ai/', **connect_opts, headers=sio_opts['extraHeaders'])
# 等待响应完成
response_event.wait(timeout=30)
# 动态计算输出的 token 数量,使用 tiktoken 进行 tokenization
output_tokens = calculate_tokens_via_tiktoken(''.join(response_text), model="gpt-3.5-turbo")
# 生成完整的响应
full_response = {
"content": [{"text": ''.join(response_text), "type": "text"}], # 合并所有文本块
"id": msg_id,
"model": model, # 动态模型
"role": "assistant",
"stop_reason": "end_turn",
"stop_sequence": None,
"type": "message",
"usage": {
"input_tokens": input_tokens, # 动态 input_tokens
"output_tokens": output_tokens, # 动态 output_tokens
},
}
return Response(json.dumps(full_response, ensure_ascii=False), content_type='application/json')
except Exception as e:
logging.error(f"Error during socket connection: {str(e)}")
return jsonify({"error": str(e)}), 500
finally:
if sio.connected:
sio.disconnect()
@app.errorhandler(404)
def not_found(error):
log_request(request.remote_addr, request.path, 404)
return "Not Found", 404
@app.errorhandler(500)
def server_error(error):
logging.error(f"Server error: {str(error)}")
log_request(request.remote_addr, request.path, 500)
return "Something broke!", 500
def create_event(event, data):
if isinstance(data, dict):
data = json.dumps(data, ensure_ascii=False) # 确保中文不会被转义
return f"event: {event}\ndata: {data}\n\n"
if __name__ == '__main__':
port = int(os.environ.get('PORT', 8081))
logging.info(f"Perplexity proxy listening on port {port}")
if not API_KEY:
logging.warning("Warning: PPLX_KEY environment variable is not set. API key validation will fail.")
app.run(host='0.0.0.0', port=port)
|