File size: 4,371 Bytes
a23d717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import matplotlib
from torch.nn import functional as F

import torch
matplotlib.use('Agg')
import time

class Timer():
    ''' Timer for recording training time distribution. '''
    def __init__(self):
        self.prev_t = time.time()
        self.clear()

    def set(self):
        self.prev_t = time.time()

    def cnt(self, mode):
        self.time_table[mode] += time.time()-self.prev_t
        self.set()
        if mode == 'bw':
            self.click += 1

    def show(self):
        total_time = sum(self.time_table.values())
        self.time_table['avg'] = total_time/self.click
        self.time_table['rd'] = 100*self.time_table['rd']/total_time
        self.time_table['fw'] = 100*self.time_table['fw']/total_time
        self.time_table['bw'] = 100*self.time_table['bw']/total_time
        msg = '{avg:.3f} sec/step (rd {rd:.1f}% | fw {fw:.1f}% | bw {bw:.1f}%)'.format(
            **self.time_table)
        self.clear()
        return msg

    def clear(self):
        self.time_table = {'rd': 0, 'fw': 0, 'bw': 0}
        self.click = 0

# Reference : https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/e2e_asr.py#L168

def human_format(num):
    magnitude = 0
    while num >= 1000:
        magnitude += 1
        num /= 1000.0
    # add more suffixes if you need them
    return '{:3.1f}{}'.format(num, [' ', 'K', 'M', 'G', 'T', 'P'][magnitude])


# provide easy access of attribute from dict, such abc.key 
class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self

def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)

def get_padding(kernel_size, dilation=1):
    return int((kernel_size*dilation - dilation)/2)


def sequence_mask(length, max_length=None):
  if max_length is None:
    max_length = length.max()
  x = torch.arange(max_length, dtype=length.dtype, device=length.device)
  return x.unsqueeze(0) < length.unsqueeze(1)

def slice_segments(x, ids_str, segment_size=4):
  ret = torch.zeros_like(x[:, :, :segment_size])
  for i in range(x.size(0)):
    idx_str = ids_str[i]
    idx_end = idx_str + segment_size
    ret[i] = x[i, :, idx_str:idx_end]
  return ret

def rand_slice_segments(x, x_lengths=None, segment_size=4):
  b, d, t = x.size()
  if x_lengths is None:
    x_lengths = t
  ids_str_max = x_lengths - segment_size + 1
  ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
  ret = slice_segments(x, ids_str, segment_size)
  return ret, ids_str


def convert_pad_shape(pad_shape):
  l = pad_shape[::-1]
  pad_shape = [item for sublist in l for item in sublist]
  return pad_shape

def generate_path(duration, mask):
  """
  duration: [b, 1, t_x]
  mask: [b, 1, t_y, t_x]
  """
  device = duration.device
  
  b, _, t_y, t_x = mask.shape
  cum_duration = torch.cumsum(duration, -1)
  
  cum_duration_flat = cum_duration.view(b * t_x)
  path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
  path = path.view(b, t_x, t_y)
  path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
  path = path.unsqueeze(1).transpose(2,3) * mask
  return path

@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
  n_channels_int = n_channels[0]
  in_act = input_a + input_b
  t_act = torch.tanh(in_act[:, :n_channels_int, :])
  s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
  acts = t_act * s_act
  return acts


def subsequent_mask(length):
  mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
  return mask


def intersperse(lst, item):
  result = [item] * (len(lst) * 2 + 1)
  result[1::2] = lst
  return result


def clip_grad_value_(parameters, clip_value, norm_type=2):
  if isinstance(parameters, torch.Tensor):
    parameters = [parameters]
  parameters = list(filter(lambda p: p.grad is not None, parameters))
  norm_type = float(norm_type)
  if clip_value is not None:
    clip_value = float(clip_value)

  total_norm = 0
  for p in parameters:
    param_norm = p.grad.data.norm(norm_type)
    total_norm += param_norm.item() ** norm_type
    if clip_value is not None:
      p.grad.data.clamp_(min=-clip_value, max=clip_value)
  total_norm = total_norm ** (1. / norm_type)
  return total_norm