File size: 5,531 Bytes
a23d717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from pydantic import BaseModel, Field
import os
from pathlib import Path
from enum import Enum
from typing import Any, Tuple
import numpy as np
from utils.hparams import HpsYaml
from utils.util import AttrDict
import torch

# Constants
EXT_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}ppg_extractor"
CONV_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}ppg2mel"
ENC_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}encoder"


if os.path.isdir(EXT_MODELS_DIRT):    
    extractors =  Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
    print("Loaded extractor models: " + str(len(extractors)))
else:
    raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.")

if os.path.isdir(CONV_MODELS_DIRT):    
    convertors =  Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth")))
    print("Loaded convertor models: " + str(len(convertors)))
else:
    raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.")

if os.path.isdir(ENC_MODELS_DIRT):    
    encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt")))
    print("Loaded encoders models: " + str(len(encoders)))
else:
    raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.")

class Model(str, Enum):
    VC_PPG2MEL = "ppg2mel"

class Dataset(str, Enum):
    AIDATATANG_200ZH = "aidatatang_200zh"
    AIDATATANG_200ZH_S = "aidatatang_200zh_s"

class Input(BaseModel):
    # def render_input_ui(st, input) -> Dict: 
    #     input["selected_dataset"] = st.selectbox(
    #         '้€‰ๆ‹ฉๆ•ฐๆฎ้›†', 
    #         ("aidatatang_200zh", "aidatatang_200zh_s")
    #     )
    # return input
    model: Model = Field(
        Model.VC_PPG2MEL, title="ๆจกๅž‹็ฑปๅž‹",
    )
    # datasets_root: str = Field(
    #     ..., alias="้ข„ๅค„็†ๆ•ฐๆฎๆ น็›ฎๅฝ•", description="่พ“ๅ…ฅ็›ฎๅฝ•๏ผˆ็›ธๅฏน/็ปๅฏน๏ผ‰,ไธ้€‚็”จไบŽppg2melๆจกๅž‹",
    #     format=True,
    #     example="..\\trainning_data\\"
    # )
    output_root: str = Field(
        ..., alias="่พ“ๅ‡บ็›ฎๅฝ•(ๅฏ้€‰)", description="ๅปบ่ฎฎไธๅกซ๏ผŒไฟๆŒ้ป˜่ฎค",
        format=True,
        example=""
    )
    continue_mode: bool = Field(
        True, alias="็ปง็ปญ่ฎญ็ปƒๆจกๅผ", description="้€‰ๆ‹ฉโ€œๆ˜ฏโ€๏ผŒๅˆ™ไปŽไธ‹้ข้€‰ๆ‹ฉ็š„ๆจกๅž‹ไธญ็ปง็ปญ่ฎญ็ปƒ",
    )
    gpu: bool = Field(
        True, alias="GPU่ฎญ็ปƒ", description="้€‰ๆ‹ฉโ€œๆ˜ฏโ€๏ผŒๅˆ™ไฝฟ็”จGPU่ฎญ็ปƒ",
    )
    verbose: bool = Field(
        True, alias="ๆ‰“ๅฐ่ฏฆๆƒ…", description="้€‰ๆ‹ฉโ€œๆ˜ฏโ€๏ผŒ่พ“ๅ‡บๆ›ดๅคš่ฏฆๆƒ…",
    )
    # TODO: Move to hiden fields by default
    convertor: convertors = Field(
        ..., alias="่ฝฌๆขๆจกๅž‹", 
        description="้€‰ๆ‹ฉ่ฏญ้Ÿณ่ฝฌๆขๆจกๅž‹ๆ–‡ไปถ."
    )
    extractor: extractors = Field(
        ..., alias="็‰นๅพๆๅ–ๆจกๅž‹", 
        description="้€‰ๆ‹ฉPPG็‰นๅพๆๅ–ๆจกๅž‹ๆ–‡ไปถ."
    )
    encoder: encoders = Field(
        ..., alias="่ฏญ้Ÿณ็ผ–็ ๆจกๅž‹", 
        description="้€‰ๆ‹ฉ่ฏญ้Ÿณ็ผ–็ ๆจกๅž‹ๆ–‡ไปถ."
    )
    njobs: int = Field(
        8, alias="่ฟ›็จ‹ๆ•ฐ", description="้€‚็”จไบŽppg2mel",
    )
    seed: int = Field(
        default=0, alias="ๅˆๅง‹้šๆœบๆ•ฐ", description="้€‚็”จไบŽppg2mel",
    )
    model_name: str = Field(
        ..., alias="ๆ–ฐๆจกๅž‹ๅ", description="ไป…ๅœจ้‡ๆ–ฐ่ฎญ็ปƒๆ—ถ็”Ÿๆ•ˆ,้€‰ไธญ็ปง็ปญ่ฎญ็ปƒๆ—ถๆ— ๆ•ˆ",
        example="test"
    )
    model_config: str = Field(
        ..., alias="ๆ–ฐๆจกๅž‹้…็ฝฎ", description="ไป…ๅœจ้‡ๆ–ฐ่ฎญ็ปƒๆ—ถ็”Ÿๆ•ˆ,้€‰ไธญ็ปง็ปญ่ฎญ็ปƒๆ—ถๆ— ๆ•ˆ",
        example=".\\ppg2mel\\saved_models\\seq2seq_mol_ppg2mel_vctk_libri_oneshotvc_r4_normMel_v2"
    )

class AudioEntity(BaseModel):
    content: bytes
    mel: Any

class Output(BaseModel):
    __root__: Tuple[str, int]

    def render_output_ui(self, streamlit_app, input) -> None:  # type: ignore
        """Custom output UI.
        If this method is implmeneted, it will be used instead of the default Output UI renderer.
        """
        sr, count = self.__root__
        streamlit_app.subheader(f"Dataset {sr} done processed total of {count}")

def train_vc(input: Input) -> Output:
    """Train VC(่ฎญ็ปƒ VC)"""

    print(">>> OneShot VC training ...")
    params = AttrDict()
    params.update({
        "gpu": input.gpu,
        "cpu": not input.gpu,
        "njobs": input.njobs,
        "seed": input.seed,
        "verbose": input.verbose,
        "load": input.convertor.value,
        "warm_start": False,
    })
    if input.continue_mode: 
        # trace old model and config
        p = Path(input.convertor.value)
        params.name = p.parent.name
        # search a config file
        model_config_fpaths = list(p.parent.rglob("*.yaml"))
        if len(model_config_fpaths) == 0:
            raise "No model yaml config found for convertor"
        config = HpsYaml(model_config_fpaths[0])
        params.ckpdir = p.parent.parent
        params.config = model_config_fpaths[0]
        params.logdir = os.path.join(p.parent, "log")
    else:
        # Make the config dict dot visitable
        config = HpsYaml(input.config)    
    np.random.seed(input.seed)
    torch.manual_seed(input.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(input.seed)
    mode = "train"
    from models.ppg2mel.train.train_linglf02mel_seq2seq_oneshotvc import Solver
    solver = Solver(config, params, mode)
    solver.load_data()
    solver.set_model()
    solver.exec()
    print(">>> Oneshot VC train finished!")

    # TODO: pass useful return code
    return Output(__root__=(input.dataset, 0))