File size: 7,093 Bytes
a23d717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
from enum import Enum
from pathlib import Path
from typing import Any, Tuple

import librosa
import matplotlib.pyplot as plt
import torch
from pydantic import BaseModel, Field
from scipy.io.wavfile import write

import models.ppg2mel as Convertor
import models.ppg_extractor as Extractor
from control.mkgui.base.components.types import FileContent
from models.encoder import inference as speacker_encoder
from models.synthesizer.inference import Synthesizer
from models.vocoder.hifigan import inference as gan_vocoder

# Constants
AUDIO_SAMPLES_DIR = f'data{os.sep}samples{os.sep}'
EXT_MODELS_DIRT = f'data{os.sep}ckpt{os.sep}ppg_extractor'
CONV_MODELS_DIRT = f'data{os.sep}ckpt{os.sep}ppg2mel'
VOC_MODELS_DIRT = f'data{os.sep}ckpt{os.sep}vocoder'
TEMP_SOURCE_AUDIO = f'wavs{os.sep}temp_source.wav'
TEMP_TARGET_AUDIO = f'wavs{os.sep}temp_target.wav'
TEMP_RESULT_AUDIO = f'wavs{os.sep}temp_result.wav'

# Load local sample audio as options TODO: load dataset 
if os.path.isdir(AUDIO_SAMPLES_DIR):
    audio_input_selection = Enum('samples', list((file.name, file) for file in Path(AUDIO_SAMPLES_DIR).glob("*.wav")))
# Pre-Load models
if os.path.isdir(EXT_MODELS_DIRT):    
    extractors =  Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
    print("Loaded extractor models: " + str(len(extractors)))
else:
    raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.")

if os.path.isdir(CONV_MODELS_DIRT):    
    convertors =  Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth")))
    print("Loaded convertor models: " + str(len(convertors)))
else:
    raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.")

if os.path.isdir(VOC_MODELS_DIRT):    
    vocoders =  Enum('vocoders', list((file.name, file) for file in Path(VOC_MODELS_DIRT).glob("**/*gan*.pt")))
    print("Loaded vocoders models: " + str(len(vocoders)))
else:
    raise Exception(f"Model folder {VOC_MODELS_DIRT} doesn't exist.")

class Input(BaseModel):
    local_audio_file: audio_input_selection = Field(
        ..., alias="่พ“ๅ…ฅ่ฏญ้Ÿณ๏ผˆๆœฌๅœฐwav๏ผ‰",
        description="้€‰ๆ‹ฉๆœฌๅœฐ่ฏญ้Ÿณๆ–‡ไปถ."
    )
    upload_audio_file: FileContent = Field(default=None, alias="ๆˆ–ไธŠไผ ่ฏญ้Ÿณ",
        description="ๆ‹–ๆ‹ฝๆˆ–็‚นๅ‡ปไธŠไผ .", mime_type="audio/wav")
    local_audio_file_target: audio_input_selection = Field(
        ..., alias="็›ฎๆ ‡่ฏญ้Ÿณ๏ผˆๆœฌๅœฐwav๏ผ‰",
        description="้€‰ๆ‹ฉๆœฌๅœฐ่ฏญ้Ÿณๆ–‡ไปถ."
    )
    upload_audio_file_target: FileContent = Field(default=None, alias="ๆˆ–ไธŠไผ ็›ฎๆ ‡่ฏญ้Ÿณ",
        description="ๆ‹–ๆ‹ฝๆˆ–็‚นๅ‡ปไธŠไผ .", mime_type="audio/wav")
    extractor: extractors = Field(
        ..., alias="็ผ–็ ๆจกๅž‹", 
        description="้€‰ๆ‹ฉ่ฏญ้Ÿณ็ผ–็ ๆจกๅž‹ๆ–‡ไปถ."
    )
    convertor: convertors = Field(
        ..., alias="่ฝฌๆขๆจกๅž‹", 
        description="้€‰ๆ‹ฉ่ฏญ้Ÿณ่ฝฌๆขๆจกๅž‹ๆ–‡ไปถ."
    )
    vocoder: vocoders = Field(
        ..., alias="่ฏญ้Ÿณ่งฃ็ ๆจกๅž‹", 
        description="้€‰ๆ‹ฉ่ฏญ้Ÿณ่งฃ็ ๆจกๅž‹ๆ–‡ไปถ(็›ฎๅ‰ๅชๆ”ฏๆŒHifiGan็ฑปๅž‹)."
    )

class AudioEntity(BaseModel):
    content: bytes
    mel: Any

class Output(BaseModel):
    __root__: Tuple[AudioEntity, AudioEntity, AudioEntity]

    def render_output_ui(self, streamlit_app, input) -> None:  # type: ignore
        """Custom output UI.
        If this method is implmeneted, it will be used instead of the default Output UI renderer.
        """
        src, target, result = self.__root__
        
        streamlit_app.subheader("Synthesized Audio")
        streamlit_app.audio(result.content, format="audio/wav")

        fig, ax = plt.subplots()
        ax.imshow(src.mel, aspect="equal", interpolation="none")
        ax.set_title("mel spectrogram(Source Audio)")
        streamlit_app.pyplot(fig)
        fig, ax = plt.subplots()
        ax.imshow(target.mel, aspect="equal", interpolation="none")
        ax.set_title("mel spectrogram(Target Audio)")
        streamlit_app.pyplot(fig)
        fig, ax = plt.subplots()
        ax.imshow(result.mel, aspect="equal", interpolation="none")
        ax.set_title("mel spectrogram(Result Audio)")
        streamlit_app.pyplot(fig)

def convert(input: Input) -> Output:
    """convert(่ฝฌๆข)"""
    # load models
    extractor = Extractor.load_model(Path(input.extractor.value))
    convertor = Convertor.load_model(Path(input.convertor.value))
    # current_synt = Synthesizer(Path(input.synthesizer.value))
    gan_vocoder.load_model(Path(input.vocoder.value))

    # load file
    if input.upload_audio_file != None:
        with open(TEMP_SOURCE_AUDIO, "w+b") as f:
            f.write(input.upload_audio_file.as_bytes())
            f.seek(0)
        src_wav, sample_rate = librosa.load(TEMP_SOURCE_AUDIO)
    else:
        src_wav, sample_rate  = librosa.load(input.local_audio_file.value)
        write(TEMP_SOURCE_AUDIO, sample_rate, src_wav) #Make sure we get the correct wav

    if input.upload_audio_file_target != None:
        with open(TEMP_TARGET_AUDIO, "w+b") as f:
            f.write(input.upload_audio_file_target.as_bytes())
            f.seek(0)
        ref_wav, _ = librosa.load(TEMP_TARGET_AUDIO)
    else:
        ref_wav, _  = librosa.load(input.local_audio_file_target.value)
        write(TEMP_TARGET_AUDIO, sample_rate, ref_wav) #Make sure we get the correct wav

    ppg = extractor.extract_from_wav(src_wav)
    # Import necessary dependency of Voice Conversion
    from utils.f0_utils import (compute_f0, compute_mean_std, f02lf0,
                                get_converted_lf0uv)   
    ref_lf0_mean, ref_lf0_std = compute_mean_std(f02lf0(compute_f0(ref_wav)))
    speacker_encoder.load_model(Path(f"data{os.sep}ckpt{os.sep}encoder{os.sep}pretrained_bak_5805000.pt"))
    embed = speacker_encoder.embed_utterance(ref_wav)
    lf0_uv = get_converted_lf0uv(src_wav, ref_lf0_mean, ref_lf0_std, convert=True)
    min_len = min(ppg.shape[1], len(lf0_uv))
    ppg = ppg[:, :min_len]
    lf0_uv = lf0_uv[:min_len]
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    _, mel_pred, att_ws = convertor.inference(
        ppg,
        logf0_uv=torch.from_numpy(lf0_uv).unsqueeze(0).float().to(device),
        spembs=torch.from_numpy(embed).unsqueeze(0).to(device),
    )
    mel_pred= mel_pred.transpose(0, 1)
    breaks = [mel_pred.shape[1]]
    mel_pred= mel_pred.detach().cpu().numpy()

    # synthesize and vocode
    wav, sample_rate = gan_vocoder.infer_waveform(mel_pred)

    # write and output 
    write(TEMP_RESULT_AUDIO, sample_rate, wav) #Make sure we get the correct wav
    with open(TEMP_SOURCE_AUDIO, "rb") as f:
        source_file = f.read()
    with open(TEMP_TARGET_AUDIO, "rb") as f:
        target_file = f.read()
    with open(TEMP_RESULT_AUDIO, "rb") as f:
        result_file = f.read()
    

    return Output(__root__=(AudioEntity(content=source_file, mel=Synthesizer.make_spectrogram(src_wav)), AudioEntity(content=target_file, mel=Synthesizer.make_spectrogram(ref_wav)), AudioEntity(content=result_file, mel=Synthesizer.make_spectrogram(wav))))