File size: 7,870 Bytes
df4ab84
 
 
 
 
 
 
 
 
 
 
 
 
3226a63
 
df4ab84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226a63
 
df4ab84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch

from diffusers import (
    DDPMScheduler,
    StableDiffusionXLImg2ImgPipeline,
)
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import retrieve_timesteps, retrieve_latents
from PIL import Image
from inversion_utils import get_ddpm_inversion_scheduler, create_xts
from config import get_config, get_num_steps_actual
from functools import partial
from compel import Compel, ReturnedEmbeddingsType

from hidiffusion import apply_hidiffusion, remove_hidiffusion

class Object(object):
    pass

args = Object()
args.images_paths = None
args.images_folder = None
args.force_use_cpu = False
args.folder_name = 'test_measure_time'
args.config_from_file = 'run_configs/noise_shift_guidance_1_5.yaml'
args.save_intermediate_results = False
args.batch_size = None
args.skip_p_to_p = True
args.only_p_to_p = False
args.fp16 = False
args.prompts_file = 'dataset_measure_time/dataset.json'
args.images_in_prompts_file = None
args.seed = 986
args.time_measure_n = 1


assert (
    args.batch_size is None or args.save_intermediate_results is False
), "save_intermediate_results is not implemented for batch_size > 1"

generator = None
device = "cuda" if torch.cuda.is_available() else "cpu"

BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
# BASE_MODEL = "stabilityai/sdxl-turbo"


pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16, 
    variant="fp16", 
    use_safetensors=True,
)
pipeline = pipeline.to(device)

pipeline.scheduler = DDPMScheduler.from_pretrained(
    BASE_MODEL,
    subfolder="scheduler",
)

apply_hidiffusion(pipeline)

config = get_config(args)

compel_proc = Compel(
  tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] ,
  text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2],
  returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
  requires_pooled=[False, True]
)

def run(
    input_image:Image,
    src_prompt:str,
    tgt_prompt:str,
    generate_size:int,
    seed:int,
    w1:float,
    w2:float,
    num_steps:int,
    start_step:int,
    guidance_scale:float,
):
    generator = torch.Generator().manual_seed(seed)

    config.num_steps_inversion = num_steps
    config.step_start = start_step
    num_steps_actual = get_num_steps_actual(config)
    

    num_steps_inversion = config.num_steps_inversion
    denoising_start = (num_steps_inversion - num_steps_actual) / num_steps_inversion
    print(f"-------->num_steps_inversion: {num_steps_inversion} num_steps_actual: {num_steps_actual} denoising_start: {denoising_start}")
    
    timesteps, num_inference_steps = retrieve_timesteps(
        pipeline.scheduler, num_steps_inversion, device, None
    )
    timesteps, num_inference_steps = pipeline.get_timesteps(
        num_inference_steps=num_inference_steps,
        denoising_start=denoising_start,
        strength=0,
        device=device,
    )
    timesteps = timesteps.type(torch.int64)

    timesteps = [torch.tensor(t) for t in timesteps.tolist()]
    timesteps_len = len(timesteps)
    config.step_start = start_step + num_steps_actual - timesteps_len
    num_steps_actual = timesteps_len
    config.max_norm_zs = [-1] * (num_steps_actual - 1) + [15.5]
    print(f"-------->num_steps_inversion: {num_steps_inversion} num_steps_actual: {num_steps_actual} step_start: {config.step_start}")
    print(f"-------->timesteps len: {len(timesteps)} max_norm_zs len: {len(config.max_norm_zs)}")
    pipeline.__call__ = partial(
        pipeline.__call__,
        num_inference_steps=num_steps_inversion,
        guidance_scale=guidance_scale,
        generator=generator,
        denoising_start=denoising_start,
        strength=0,
    )

    x_0_image = input_image
    x_0 = encode_image(x_0_image, pipeline)
    x_ts = create_xts(1, None, 0, generator, pipeline.scheduler, timesteps, x_0, no_add_noise=False)
    x_ts = [xt.to(dtype=torch.float16) for xt in x_ts]
    latents = [x_ts[0]]
    x_ts_c_hat = [None]
    config.ws1 = [w1] * num_steps_actual
    config.ws2 = [w2] * num_steps_actual
    pipeline.scheduler = get_ddpm_inversion_scheduler(
                    pipeline.scheduler,
                    config.step_function,
                    config,
                    timesteps,
                    config.save_timesteps,
                    latents,
                    x_ts,
                    x_ts_c_hat,
                    args.save_intermediate_results,
                    pipeline,
                    x_0,
                    v1s_images := [],
                    v2s_images := [],
                    deltas_images := [],
                    v1_x0s := [],
                    v2_x0s := [],
                    deltas_x0s := [],
                    "res12",
                    image_name="im_name",
                    time_measure_n=args.time_measure_n,
                )
    latent = latents[0].expand(3, -1, -1, -1)
    prompt = [src_prompt, src_prompt, tgt_prompt]
    conditioning, pooled = compel_proc(prompt)
    image = pipeline.__call__(
        image=latent,
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled,
        eta=1,
    ).images
    return image[2]

def encode_image(image, pipe):
    image = pipe.image_processor.preprocess(image)
    originDtype = pipe.dtype
    image = image.to(device=device, dtype=originDtype)

    if pipe.vae.config.force_upcast:
        image = image.float()
        pipe.vae.to(dtype=torch.float32)

    if isinstance(generator, list):
        init_latents = [
            retrieve_latents(pipe.vae.encode(image[i : i + 1]), generator=generator[i])
            for i in range(1)
        ]
        init_latents = torch.cat(init_latents, dim=0)
    else:
        init_latents = retrieve_latents(pipe.vae.encode(image), generator=generator)

    if pipe.vae.config.force_upcast:
        pipe.vae.to(originDtype)

    init_latents = init_latents.to(originDtype)
    init_latents = pipe.vae.config.scaling_factor * init_latents

    return init_latents.to(dtype=torch.float16)

def get_timesteps(pipe, num_inference_steps, strength, device, denoising_start=None):
    # get the original timestep using init_timestep
    if denoising_start is None:
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
        t_start = max(num_inference_steps - init_timestep, 0)
    else:
        t_start = 0

    timesteps = pipe.scheduler.timesteps[t_start * pipe.scheduler.order :]

    # Strength is irrelevant if we directly request a timestep to start at;
    # that is, strength is determined by the denoising_start instead.
    if denoising_start is not None:
        discrete_timestep_cutoff = int(
            round(
                pipe.scheduler.config.num_train_timesteps
                - (denoising_start * pipe.scheduler.config.num_train_timesteps)
            )
        )

        num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
        if pipe.scheduler.order == 2 and num_inference_steps % 2 == 0:
            # if the scheduler is a 2nd order scheduler we might have to do +1
            # because `num_inference_steps` might be even given that every timestep
            # (except the highest one) is duplicated. If `num_inference_steps` is even it would
            # mean that we cut the timesteps in the middle of the denoising step
            # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
            # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
            num_inference_steps = num_inference_steps + 1

        # because t_n+1 >= t_n, we slice the timesteps starting from the end
        timesteps = timesteps[-num_inference_steps:]
        return timesteps, num_inference_steps

    return timesteps, num_inference_steps - t_start