Spaces:
Sleeping
Sleeping
File size: 5,535 Bytes
e99c825 a4a060a e99c825 a4a060a e99c825 421c177 e99c825 a4a060a 0a74034 a4a060a 44f4bf1 e99c825 0a74034 e99c825 0a74034 e99c825 0a74034 e99c825 0a74034 e99c825 0a74034 e99c825 0a74034 e99c825 0a74034 e99c825 0a74034 bf09c3f e99c825 0a74034 84474bd e99c825 0a74034 e99c825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import time
import spaces
import cv2
import gradio as gr
import torch
from gfpgan.utils import GFPGANer
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
os.system("pip freeze")
# download weights
if not os.path.exists('realesr-general-x4v3.pth'):
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
if not os.path.exists('GFPGANv1.2.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
if not os.path.exists('GFPGANv1.3.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
if not os.path.exists('GFPGANv1.4.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('RestoreFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
if not os.path.exists('CodeFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
upsampler = None
os.makedirs('output', exist_ok=True)
@spaces.GPU(duration=10)
def enhance(
img_path:str,
version:str='1.4',
scale:int=2,
upscale:int=2,
):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
extension = os.path.splitext(os.path.basename(img_path))[1]
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2: # for gray inputs
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
if version == 'v1.2':
face_enhancer = GFPGANer(model_path='GFPGANv1.2.pth', upscale=upscale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'v1.3':
face_enhancer = GFPGANer(model_path='GFPGANv1.3.pth', upscale=upscale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'v1.4':
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=upscale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'RestoreFormer':
face_enhancer = GFPGANer(model_path='RestoreFormer.pth', upscale=upscale, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'CodeFormer':
face_enhancer = GFPGANer(model_path='CodeFormer.pth', upscale=upscale, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
elif version == 'RealESR-General-x4v3':
face_enhancer = GFPGANer(model_path='realesr-general-x4v3.pth', upscale=upscale, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=True, paste_back=True)
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
else:
extension = 'jpg'
save_path = f'output/out.{extension}'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return output, save_path, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def create_demo() -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
version = gr.Radio(['v1.2', 'v1.3', 'v1.4'], type="value", value='v1.4', label='version')
scale = gr.Number(label="Rescaling factor", value=2)
with gr.Column():
upscale = gr.Number(label="Upscale factor", value=2)
g_btn = gr.Button("Enhance")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="filepath")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="numpy", interactive=False)
download_path = gr.File(label="Download the output image", interactive=False)
restored_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
g_btn.click(
fn=enhance,
inputs=[input_image, version, scale, upscale],
outputs=[restored_image, download_path, restored_cost],
)
return demo
|