File size: 5,735 Bytes
f01a424
 
 
 
 
13b9583
f01a424
 
 
 
 
 
 
e581b1e
f01a424
 
e581b1e
f01a424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e581b1e
 
 
 
 
 
 
f01a424
 
 
e581b1e
 
f01a424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e581b1e
f01a424
 
 
 
13b9583
e581b1e
 
 
f01a424
 
 
 
 
 
 
 
 
 
e581b1e
 
f01a424
 
 
 
 
 
13b9583
 
f01a424
13b9583
 
 
 
 
f01a424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e581b1e
f01a424
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import spaces
import gradio as gr
import time
import torch
import numpy as np
import cv2

from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from diffusers import (
    DiffusionPipeline,
    StableDiffusionInstructPix2PixPipeline,
    EulerAncestralDiscreteScheduler,
    T2IAdapter,
)

from controlnet_aux import (
    CannyDetector,
    LineartDetector,
    PidiNetDetector,
    HEDdetector,
)

BASE_MODEL = "timbrooks/instruct-pix2pix"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

DEFAULT_EDIT_PROMPT = "change hair to blue"
DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, poorly drawn face, bad face, fused face, ugly face, worst face, asymmetrical, unrealistic skin texture, bad proportions, out of frame, poorly drawn hands, cloned face, double face"

DEFAULT_CATEGORY = "hair"

adapter = T2IAdapter.from_pretrained(
    "TencentARC/t2iadapter_canny_sd15v2",
    torch_dtype=torch.float16,
    varient="fp16",
)

basepipeline = DiffusionPipeline.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16,
    use_safetensors=True,
    adapter=adapter,
    custom_pipeline="./pipelines/pipeline_sd_adapter_p2p.py",
)

basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)

basepipeline = basepipeline.to(DEVICE)

basepipeline.enable_model_cpu_offload()

@spaces.GPU(duration=30)
def image_to_image(
    input_image: Image,
    edit_prompt: str,
    seed: int,
    num_steps: int,
    guidance_scale: float,
    image_guidance_scale: float,
    generate_size: int,
    cond_scale1: float = 1.2,
):
    run_task_time = 0
    time_cost_str = ''
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    canny_image = custom_canny_detector(input_image)

    cond_image = canny_image
    cond_scale = cond_scale1

    generator = torch.Generator(device=DEVICE).manual_seed(seed)
    generated_image = basepipeline(
        generator=generator,
        prompt=edit_prompt,
        negative_prompt=DEFAULT_NEGATIVE_PROMPT,
        image=input_image,
        guidance_scale=guidance_scale,
        image_guidance_scale=image_guidance_scale,
        num_inference_steps=num_steps,
        adapter_image=cond_image,
        adapter_conditioning_scale=cond_scale,
    ).images[0]
    
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    return generated_image, time_cost_str

def custom_canny_detector(image):
    image = np.array(image)

    low_threshold = 100
    high_threshold = 200

    image = cv2.Canny(image, low_threshold, high_threshold)
    image = Image.fromarray(image)
    return image

def get_time_cost(run_task_time, time_cost_str):
    now_time = int(time.time()*1000)
    if run_task_time == 0:
        time_cost_str = 'start'
    else:
        if time_cost_str != '': 
            time_cost_str += f'-->'
        time_cost_str += f'{now_time - run_task_time}'
    run_task_time = now_time
    return run_task_time, time_cost_str

def create_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                generate_size = gr.Number(label="Generate Size", value=512)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
                guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
            with gr.Column():
                image_guidance_scale = gr.Slider(minimum=0, maximum=30, value=1.5, step=0.1, label="Image Guidance Scale")
                with gr.Accordion("Advanced Options", open=False):
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                    seed = gr.Number(label="Seed", value=8)
                    category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
                    cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond_scale1")
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, image_guidance_scale, generate_size, cond_scale1],
            outputs=[generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, generated_image],
            outputs=[restored_image],
        )

    return demo