Spaces:
Runtime error
Runtime error
File size: 19,909 Bytes
d40d29c cceae86 d40d29c 14db2b1 cceae86 d40d29c c21743b d40d29c c21743b 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 cceae86 c21743b 14db2b1 c21743b 14db2b1 c21743b d40d29c c21743b 14db2b1 50a75fe 14db2b1 d98f9ce 84c1c49 d98f9ce c21743b 89e9618 c21743b 14db2b1 d40d29c 14db2b1 d40d29c b05b21c 14db2b1 d40d29c cceae86 d40d29c cceae86 d40d29c cceae86 d40d29c cceae86 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 84c1c49 d40d29c 14db2b1 d40d29c c21743b cceae86 c21743b 14db2b1 c21743b cceae86 14db2b1 c21743b cceae86 15fdbbb cceae86 c21743b 14db2b1 c21743b 14db2b1 c21743b 14db2b1 c21743b d40d29c 14db2b1 d40d29c c21743b 51a5a7d 14db2b1 405742e d40d29c 14db2b1 d40d29c c21743b 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 c21743b d40d29c c21743b d40d29c c21743b d40d29c 14db2b1 d40d29c cceae86 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 d40d29c 14db2b1 c21743b 14db2b1 c21743b d40d29c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
import os
import json
import shutil
import uuid
import tempfile
import subprocess
import re
import time
import traceback
import gradio as gr
import pytube as pt
import nemo.collections.asr as nemo_asr
import torch
import speech_to_text_buffered_infer_ctc as buffered_ctc
import speech_to_text_buffered_infer_rnnt as buffered_rnnt
from nemo.utils import logging
# Set NeMo cache dir as /tmp
from nemo import constants
os.environ[constants.NEMO_ENV_CACHE_DIR] = "/tmp/nemo/"
SAMPLE_RATE = 16000 # Default sample rate for ASR
BUFFERED_INFERENCE_DURATION_THRESHOLD = 60.0 # 60 second and above will require chunked inference.
CHUNK_LEN_IN_SEC = 20.0 # Chunk size
BUFFER_LEN_IN_SEC = 30.0 # Total buffer size
TITLE = "NeMo ASR Inference on Hugging Face"
DESCRIPTION = "Demo of all languages supported by NeMo ASR"
DEFAULT_EN_MODEL = "nvidia/stt_en_conformer_transducer_xlarge"
DEFAULT_BUFFERED_EN_MODEL = "nvidia/stt_en_conformer_transducer_large"
# Pre-download and cache the model in disk space
logging.setLevel(logging.ERROR)
tmp_model = nemo_asr.models.ASRModel.from_pretrained(DEFAULT_BUFFERED_EN_MODEL, map_location='cpu')
del tmp_model
logging.setLevel(logging.INFO)
MARKDOWN = f"""
# {TITLE}
## {DESCRIPTION}
"""
CSS = """
p.big {
font-size: 20px;
}
/* From https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition/blob/main/app.py */
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%;font-size:20px;}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
ARTICLE = """
<br><br>
<p class='big' style='text-align: center'>
<a href='https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/intro.html' target='_blank'>NeMo ASR</a>
|
<a href='https://github.com/NVIDIA/NeMo#nvidia-nemo' target='_blank'>Github Repo</a>
</p>
"""
SUPPORTED_LANGUAGES = set([])
SUPPORTED_MODEL_NAMES = set([])
# HF models, grouped by language identifier
hf_filter = nemo_asr.models.ASRModel.get_hf_model_filter()
hf_filter.task = "automatic-speech-recognition"
hf_infos = nemo_asr.models.ASRModel.search_huggingface_models(model_filter=hf_filter)
for info in hf_infos:
lang_id = info.modelId.split("_")[1] # obtains lang id as str
SUPPORTED_LANGUAGES.add(lang_id)
SUPPORTED_MODEL_NAMES.add(info.modelId)
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
# DEBUG FILTER
# SUPPORTED_MODEL_NAMES = list(filter(lambda x: "en" in x and "conformer_transducer_large" in x, SUPPORTED_MODEL_NAMES))
model_dict = {}
for model_name in SUPPORTED_MODEL_NAMES:
try:
iface = gr.Interface.load(f'models/{model_name}')
model_dict[model_name] = iface
except:
pass
SUPPORTED_LANG_MODEL_DICT = {}
for lang in SUPPORTED_LANGUAGES:
for model_id in SUPPORTED_MODEL_NAMES:
if ("_" + lang + "_") in model_id:
# create new lang in dict
if lang not in SUPPORTED_LANG_MODEL_DICT:
SUPPORTED_LANG_MODEL_DICT[lang] = [model_id]
else:
SUPPORTED_LANG_MODEL_DICT[lang].append(model_id)
# Sort model names
for lang in SUPPORTED_LANG_MODEL_DICT.keys():
model_ids = SUPPORTED_LANG_MODEL_DICT[lang]
model_ids = sorted(model_ids)
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
def get_device():
gpu_available = torch.cuda.is_available()
if gpu_available:
return torch.cuda.get_device_name()
else:
return "CPU"
def parse_duration(audio_file):
"""
FFMPEG to calculate durations. Libraries can do it too, but filetypes cause different libraries to behave differently.
"""
process = subprocess.Popen(['ffmpeg', '-i', audio_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
stdout, stderr = process.communicate()
matches = re.search(
r"Duration:\s{1}(?P<hours>\d+?):(?P<minutes>\d+?):(?P<seconds>\d+\.\d+?),", stdout.decode(), re.DOTALL
).groupdict()
duration = 0.0
duration += float(matches['hours']) * 60.0 * 60.0
duration += float(matches['minutes']) * 60.0
duration += float(matches['seconds']) * 1.0
return duration
def resolve_model_type(model_name: str) -> str:
"""
Map model name to a class type, without loading the model. Has some hardcoded assumptions in
semantics of model naming.
"""
# Loss specific maps
if 'hybrid' in model_name or 'hybrid_ctc' in model_name or 'hybrid_transducer' in model_name:
return 'hybrid'
elif 'transducer' in model_name or 'rnnt' in model_id:
return 'transducer'
elif 'ctc' in model_name:
return 'ctc'
# Model specific maps
if 'jasper' in model_name:
return 'ctc'
elif 'quartznet' in model_name:
return 'ctc'
elif 'citrinet' in model_name:
return 'ctc'
elif 'contextnet' in model_name:
return 'transducer'
return None
def resolve_model_stride(model_name) -> int:
"""
Model specific pre-calc of stride levels.
Dont laod model to get such info.
"""
if 'jasper' in model_name:
return 2
if 'quartznet' in model_name:
return 2
if 'conformer' in model_name:
return 4
if 'squeezeformer' in model_name:
return 4
if 'citrinet' in model_name:
return 8
if 'contextnet' in model_name:
return 8
return -1
def convert_audio(audio_filepath):
"""
Transcode all mp3 files to monochannel 16 kHz wav files.
"""
filedir = os.path.split(audio_filepath)[0]
filename, ext = os.path.splitext(audio_filepath)
if ext == 'wav':
return audio_filepath
out_filename = os.path.join(filedir, filename + '.wav')
process = subprocess.Popen(
['ffmpeg', '-y', '-i', audio_filepath, '-ac', '1', '-ar', str(SAMPLE_RATE), out_filename],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
close_fds=True,
)
stdout, stderr = process.communicate()
if os.path.exists(out_filename):
return out_filename
else:
return None
def extract_result_from_manifest(filepath, model_name) -> (bool, str):
"""
Parse the written manifest which is result of the buffered inference process.
"""
data = []
with open(filepath, 'r', encoding='utf-8') as f:
for line in f:
try:
line = json.loads(line)
data.append(line['pred_text'])
except Exception as e:
pass
if len(data) > 0:
return True, data[0]
else:
return False, f"Could not perform inference on model with name : {model_name}"
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def infer_audio(model_name: str, audio_file: str) -> str:
"""
Main method that switches from HF inference for small audio files to Buffered CTC/RNNT mode for long audio files.
Args:
model_name: Str name of the model (potentially with / to denote HF models)
audio_file: Path to an audio file (mp3 or wav)
Returns:
str which is the transcription if successful.
str which is HTML output of logs.
"""
# Parse the duration of the audio file
duration = parse_duration(audio_file)
if duration > BUFFERED_INFERENCE_DURATION_THRESHOLD: # Longer than one minute; use buffered mode
# Process audio to be of wav type (possible youtube audio)
audio_file = convert_audio(audio_file)
# If audio file transcoding failed, let user know
if audio_file is None:
return "Error:- Failed to convert audio file to wav."
# Extract audio dir from resolved audio filepath
audio_dir = os.path.split(audio_file)[0]
# Next calculate the stride of each model
model_stride = resolve_model_stride(model_name)
if model_stride < 0:
return f"Error:- Failed to compute the model stride for model with name : {model_name}"
# Process model type (CTC/RNNT/Hybrid)
model_type = resolve_model_type(model_name)
if model_type is None:
# Model type could not be infered.
# Try all feasible options
RESULT = None
try:
ctc_config = buffered_ctc.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_ctc.main(ctc_config)
result = extract_result_from_manifest('output.json', model_name)
if result[0]:
RESULT = result[1]
except Exception as e:
pass
try:
rnnt_config = buffered_rnnt.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_rnnt.main(rnnt_config)
result = extract_result_from_manifest('output.json', model_name)[-1]
if result[0]:
RESULT = result[1]
except Exception as e:
pass
if RESULT is None:
return f"Error:- Could not parse model type; failed to perform inference with model {model_name}!"
elif model_type == 'ctc':
# CTC Buffered Inference
ctc_config = buffered_ctc.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_ctc.main(ctc_config)
return extract_result_from_manifest('output.json', model_name)[-1]
elif model_type == 'transducer':
# RNNT Buffered Inference
rnnt_config = buffered_rnnt.TranscriptionConfig(
pretrained_name=model_name,
audio_dir=audio_dir,
output_filename="output.json",
audio_type="wav",
overwrite_transcripts=True,
model_stride=model_stride,
chunk_len_in_secs=20.0,
total_buffer_in_secs=30.0,
)
buffered_rnnt.main(rnnt_config)
return extract_result_from_manifest('output.json', model_name)[-1]
else:
return f"Error:- Could not parse model type; failed to perform inference with model {model_name}!"
else:
# Obtain Gradio Model function from cache of models
if model_name in model_dict:
model = model_dict[model_name]
else:
model = None
if model is not None:
# Use HF API for transcription
try:
transcriptions = model(audio_file)
return transcriptions
except Exception as e:
transcriptions = ""
error = ""
error += (
f"The model `{model_name}` is currently loading and cannot be used "
f"for transcription.<br>"
f"Please try another model or wait a few minutes."
)
return error
else:
error = (
f"Error:- Could not find model {model_name} in list of available models : "
f"{list([k for k in model_dict.keys()])}"
)
return error
def transcribe(microphone, audio_file, model_name):
audio_data = None
warn_output = ""
if (microphone is not None) and (audio_file is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
audio_data = microphone
elif (microphone is None) and (audio_file is None):
warn_output = "ERROR: You have to either use the microphone or upload an audio file"
elif microphone is not None:
audio_data = microphone
else:
audio_data = audio_file
if audio_data is not None:
audio_duration = parse_duration(audio_data)
else:
audio_duration = None
time_diff = None
try:
with tempfile.TemporaryDirectory() as tempdir:
filename = os.path.split(audio_data)[-1]
new_audio_data = os.path.join(tempdir, filename)
shutil.copy2(audio_data, new_audio_data)
if os.path.exists(audio_data):
os.remove(audio_data)
audio_data = new_audio_data
# Use HF API for transcription
start = time.time()
transcriptions = infer_audio(model_name, audio_data)
end = time.time()
time_diff = end - start
except Exception as e:
transcriptions = ""
warn_output = warn_output
if warn_output != "":
warn_output += "<br><br>"
warn_output += (
f"The model `{model_name}` is currently loading and cannot be used "
f"for transcription.<br>"
f"Please try another model or wait a few minutes."
)
# Built HTML output
if warn_output != "":
html_output = build_html_output(warn_output, style="result_item_error")
else:
if transcriptions.startswith("Error:-"):
html_output = build_html_output(transcriptions, style="result_item_error")
else:
output = f"Successfully transcribed on {get_device()} ! <br>" f"Transcription Time : {time_diff: 0.3f} s"
if audio_duration > BUFFERED_INFERENCE_DURATION_THRESHOLD:
output += f""" <br><br>
Note: Audio duration was {audio_duration: 0.3f} s, so model had to be downloaded, initialized, and then
buffered inference was used. <br>
"""
html_output = build_html_output(output)
return transcriptions, html_output
def _return_yt_html_embed(yt_url):
""" Obtained from https://huggingface.co/spaces/whisper-event/whisper-demo """
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url: str, model_name: str):
""" Modified from https://huggingface.co/spaces/whisper-event/whisper-demo """
if yt_url == "":
text = ""
html_embed_str = ""
html_output = build_html_output(f"""
Error:- No YouTube URL was provide !
""", style='result_item_error')
return text, html_embed_str, html_output
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tempdir:
file_uuid = str(uuid.uuid4().hex)
file_uuid = f"{tempdir}/{file_uuid}.mp3"
# Download YT Audio temporarily
download_time_start = time.time()
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename=file_uuid)
download_time_end = time.time()
# Get audio duration
audio_duration = parse_duration(file_uuid)
# Perform transcription
infer_time_start = time.time()
text = infer_audio(model_name, file_uuid)
infer_time_end = time.time()
if text.startswith("Error:-"):
html_output = build_html_output(text, style='result_item_error')
else:
html_output = f"""
Successfully transcribed on {get_device()} ! <br>
Audio Download Time : {download_time_end - download_time_start: 0.3f} s <br>
Transcription Time : {infer_time_end - infer_time_start: 0.3f} s <br>
"""
if audio_duration > BUFFERED_INFERENCE_DURATION_THRESHOLD:
html_output += f""" <br>
Note: Audio duration was {audio_duration: 0.3f} s, so model had to be downloaded, initialized, and then
buffered inference was used. <br>
"""
html_output = build_html_output(html_output)
return text, html_embed_str, html_output
def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
"""
Utility function to select a langauge from a dropdown menu, and simultanously update another dropdown
containing the corresponding model checkpoints for that language.
Args:
default_en_model: str name of a default english model that should be the set default.
Returns:
Gradio components for lang_selector (Dropdown menu) and models_in_lang (Dropdown menu)
"""
lang_selector = gr.components.Dropdown(
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
)
models_in_lang = gr.components.Dropdown(
choices=sorted(list(SUPPORTED_LANG_MODEL_DICT["en"])),
value=default_en_model,
label="Models",
interactive=True,
)
def update_models_with_lang(lang):
models_names = sorted(list(SUPPORTED_LANG_MODEL_DICT[lang]))
default = models_names[0]
if lang == 'en':
default = default_en_model
return models_in_lang.update(choices=models_names, value=default)
lang_selector.change(update_models_with_lang, inputs=[lang_selector], outputs=[models_in_lang])
return lang_selector, models_in_lang
"""
Define the GUI
"""
demo = gr.Blocks(title=TITLE, css=CSS)
with demo:
header = gr.Markdown(MARKDOWN)
with gr.Tab("Transcribe Audio"):
with gr.Row() as row:
file_upload = gr.components.Audio(source="upload", type='filepath', label='Upload File')
microphone = gr.components.Audio(source="microphone", type='filepath', label='Microphone')
lang_selector, models_in_lang = create_lang_selector_component()
run = gr.components.Button('Transcribe')
transcript = gr.components.Label(label='Transcript')
audio_html_output = gr.components.HTML()
run.click(
transcribe, inputs=[microphone, file_upload, models_in_lang], outputs=[transcript, audio_html_output]
)
with gr.Tab("Transcribe Youtube"):
yt_url = gr.components.Textbox(
lines=1, label="Youtube URL", placeholder="Paste the URL to a YouTube video here"
)
lang_selector_yt, models_in_lang_yt = create_lang_selector_component(
default_en_model=DEFAULT_BUFFERED_EN_MODEL
)
with gr.Row():
run = gr.components.Button('Transcribe YouTube')
embedded_video = gr.components.HTML()
transcript = gr.components.Label(label='Transcript')
yt_html_output = gr.components.HTML()
run.click(
yt_transcribe, inputs=[yt_url, models_in_lang_yt], outputs=[transcript, embedded_video, yt_html_output]
)
gr.components.HTML(ARTICLE)
demo.queue(concurrency_count=1)
demo.launch(enable_queue=True)
|