File size: 5,796 Bytes
d663592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import torch
import numpy as np
import fasttext
import os
import urllib
from transformers import MBartForConditionalGeneration, MBart50Tokenizer


MODEL_URL_MYV_MUL = 'slone/mbart-large-51-myv-mul-v1'
MODEL_URL_MUL_MYV = 'slone/mbart-large-51-mul-myv-v1'
MODEL_URL_LANGID = 'https://huggingface.co/slone/fastText-LID-323/resolve/main/lid.323.ftz'
MODEL_PATH_LANGID = 'lid.323.ftz'


lang_to_code = {
    'Эрзянь | Erzya': 'myv_XX',
    'Русский | Рузонь | Russian': 'ru_RU',
    'Suomi | Суоминь | Finnish': 'fi_FI',
    'Deutsch | Немецень | German': 'de_DE',
    'Español | Испанонь | Spanish': 'es_XX',
    'English | Англань ': 'en_XX',
    'हिन्दी | Хинди | Hindi': 'hi_IN',
    '漢語 | Китаень | Chinese': 'zh_CN',
    'Türkçe | Турконь | Turkish': 'tr_TR',
    'Українська | Украинань | Ukrainian': 'uk_UA',
    'Français | Французонь | French': 'fr_XX',
    'العربية | Арабонь | Arabic': 'ar_AR',
}


def fix_tokenizer(tokenizer, extra_lang='myv_XX'):
    """Add a new language id to a MBART 50 tokenizer (because it is not serialized) and shift the mask token id."""
    old_len = len(tokenizer) - int(extra_lang in tokenizer.added_tokens_encoder)
    tokenizer.lang_code_to_id[extra_lang] = old_len-1
    tokenizer.id_to_lang_code[old_len-1] = extra_lang
    tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset

    tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
    tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
    if extra_lang not in tokenizer._additional_special_tokens:
        tokenizer._additional_special_tokens.append(extra_lang)
    tokenizer.added_tokens_encoder = {}


def translate(
        text, model, tokenizer,
        src='ru_RU',
        trg='myv_XX',
        max_length='auto',
        num_beams=3,
        repetition_penalty=5.0,
        train_mode=False, n_out=None,
        **kwargs
):
    tokenizer.src_lang = src
    encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
    if max_length == 'auto':
        max_length = int(32 + 1.5 * encoded.input_ids.shape[1])
    if train_mode:
        model.train()
    else:
        model.eval()
    generated_tokens = model.generate(
        **encoded.to(model.device),
        forced_bos_token_id=tokenizer.lang_code_to_id[trg],
        max_length=max_length,
        num_beams=num_beams,
        repetition_penalty=repetition_penalty,
        # early_stopping=True,
        num_return_sequences=n_out or 1,
        **kwargs
    )
    out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
    if isinstance(text, str) and n_out is None:
        return out[0]
    return out


def translate_rerank(
    text, model, tokenizer,
    src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False,
    n=5, diversity_penalty=3.0, lang='myv', max_score=0.3, order_penalty=0.01,
    verbose=False,
    **kwargs
):
    texts = translate(
        text, model, tokenizer, src, trg,
        max_length=max_length, train_mode=train_mode, repetition_penalty=repetition_penalty,
        num_beams=n,
        num_beam_groups=n,
        diversity_penalty=diversity_penalty,
        n_out=n,
        **kwargs
    )
    scores = [get_mean_lang_score(t, lang=lang, max_score=max_score) for t in texts]
    pen_scores = scores - order_penalty * np.arange(n)
    if verbose:
        print(texts)
        print(scores)
        print(pen_scores)
    return texts[np.argmax(pen_scores)]


def get_mean_lang_score(text, lang='myv', k=300, max_score=0.3):
    words = text.split() + [text]
    res = []
    for langs, scores in zip(*langid_model.predict(words, k=k)):
        d = dict(zip([l[9:] for l in langs], scores))
        score = min(d.get(lang, 0), max_score) / max_score
        res.append(score)
    # print(res)
    return np.mean(res)


def translate_wrapper(text, src, trg):
    src = lang_to_code.get(src)
    trg = lang_to_code.get(trg)
    if src == trg:
        return 'Please choose two different languages'
    if src == 'myv_XX':
        model = model_myv_mul
    elif trg == 'myv_XX':
        model = model_mul_myv
    else:
        return 'Please translate to or from Erzya'
    print(text, src, trg)
    fn = translate_rerank if trg == 'myv_XX' else translate
    result = fn(
        text=text,
        model=model,
        tokenizer=tokenizer,
        src=src,
        trg=trg,
    )
    return result


interface = gr.Interface(
    translate_wrapper,
    [
        gr.Textbox(label="Text / текстэнь", lines=2, placeholder='text to translate / текстэнь ютавтозь '),
        gr.Dropdown(list(lang_to_code.keys()), type="value", label='source language / васень келесь', value=list(lang_to_code.keys())[0]),
        gr.Dropdown(list(lang_to_code.keys()), type="value", label='target language / эряви келесь', value=list(lang_to_code.keys())[1]),
    ],
    "text",
)


if __name__ == '__main__':
    model_mul_myv = MBartForConditionalGeneration.from_pretrained(MODEL_URL_MUL_MYV)
    model_myv_mul = MBartForConditionalGeneration.from_pretrained(MODEL_URL_MYV_MUL)
    if torch.cuda.is_available():
        model_mul_myv.cuda()
        model_myv_mul.cuda()
    tokenizer = MBart50Tokenizer.from_pretrained(MODEL_URL_MYV_MUL)
    fix_tokenizer(tokenizer)

    if not os.path.exists(MODEL_PATH_LANGID):
        print('downloading LID model...')
        urllib.request.urlretrieve(MODEL_URL_LANGID, MODEL_PATH_LANGID)
    langid_model = fasttext.load_model(MODEL_PATH_LANGID)

    interface.launch()