File size: 3,767 Bytes
f3a39f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from functools import reduce
import random
import visual
######## Width and height #######
N = 3
#M = 3
#################################
EMPTY = -1
WIRE = 0
SOURCE = 1
SINK = 2
types = ["Wire","Source","Sink"]
NORTH,EAST,SOUTH,WEST = range(4)
edges = ["North","East","South","West"]
directions = [(0,1),(1,0),(0,-1),(-1,0)]
def isWireConnected(puzzle,x,y):
_,ds = puzzle[y][x]
drs= [directions[d] for d in ds]
for d in ds:
dx,dy = directions[d]
if 0 <= y+dy < len(puzzle) and 0 <= x+dx < len(puzzle[y+dy]):
t2,ds2 = puzzle[y+dy][x+dx]
if t2 == EMPTY:
continue
if (d+2)%4 not in ds2:
return False
else:
return False
return True
def gettile():
return (WIRE, [i for i in range(4) if random.random() < 0.4])
def consistent(puzzle,x,y):
if not isWireConnected(puzzle,x,y):
return False
if y > 0:
if not isWireConnected(puzzle,x,y-1):
return False
if x > 0:
if not isWireConnected(puzzle,x-1,y):
return False
return True
def joined(puzzle,x1,y1,x2,y2):
# is there a wire connecting the tiles at x1,y1 and x2,y2
_,ds = puzzle[y1][x1]
_,ds2 = puzzle[y2][x2]
diff = (x2-x1,y2-y1)
if diff not in [(0,1),(1,0),(0,-1),(-1,0)]: return False
d = directions.index(diff)
return (d+2)%4 in ds2 and d in ds
def neighbours(puzzle,x,y):
_,ds = puzzle[y][x]
for d in ds:
dx,dy = directions[d]
if 0 <= y+dy < len(puzzle) and 0 <= x+dx < len(puzzle[y+dy]):
yield (x+dx,y+dy)
def reachable(puzzle,x,y):
ttype,_ = puzzle[y][x]
found = [(x,y)]
ttype2 = SINK if ttype == SOURCE else SOURCE
assert ttype in [SOURCE,SINK]
flag = True
while flag:
flag = False
for (x1,y1) in found.copy():
for (x2,y2) in neighbours(puzzle,x1,y1):
if (x2,y2) in found:
continue
found.append((x2,y2))
flag = True
if puzzle[y2][x2][0] == ttype2:
return (x2,y2)
return random.choice(found[1:])
seed1=0
def genpuzzle(w,h=None,seed=0):
global seed1
if h is None:
h = w
if seed == 0:
seed = random.randint(0,9223372036854775807)
random.seed(seed)
seed1 = seed
puzzle = [[(EMPTY,[]) for _ in range(w)] for _ in range(h)]
for y in range(h):
for x in range(w):
puzzle[y][x] = gettile()
while not consistent(puzzle,x,y):
puzzle[y][x] = gettile()
numsinks = (w*h//10) + 1
for _ in range(numsinks):
x = random.randint(0,w-1)
y = random.randint(0,h-1)
if puzzle[y][x][1] != []:
t1,t2 = random.choice([(SOURCE,SINK),(SINK,SOURCE)])
puzzle[y][x] = (t1,puzzle[y][x][1])
x2,y2 = reachable(puzzle,x,y)
puzzle[y2][x2] = (t2,puzzle[y2][x2][1])
return puzzle
def h(puzzle):
output = "["
for row in reversed(puzzle):
ss = []
for t in row:
s = types[t[0]]# + " "
s += "[" + ",".join(map(lambda x: edges[x], t[1])) + "]"
ss.append(s)
output += "[" + ",".join(ss) + "],"
output = output[:-1] + "]"
return output
def shuf(puzzle):
def rot(rs,x):
return (x[0], list(map(lambda y: (y+rs)%4, x[1])))
return [[rot(random.randint(0,3),t) for t in ln] for ln in puzzle]
if __name__ == '__main__':
try:
p = genpuzzle(N,M)
except NameError:
p = genpuzzle(N)
p_ = shuf(p)
print(h(p))
print('=======================================')
print(h(p_))
p2 = visual.join(p,p_)
visual.show(p2)
|