File size: 4,339 Bytes
f3a39f8 adbf004 5fa9e4b adbf004 f3a39f8 5fa9e4b f3a39f8 5fa9e4b adbf004 5fa9e4b adbf004 5fa9e4b adbf004 f3a39f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
from functools import reduce
import random
import visual
######## Width and height #######
N = 3
#M = 3
#################################
EMPTY = -1
WIRE = 0
SOURCE = 1
SINK = 2
types = ["Wire","Source","Sink"]
NORTH,EAST,SOUTH,WEST = range(4)
edges = ["North","East","South","West"]
directions = [(0,1),(1,0),(0,-1),(-1,0)]
def isWireConnected(puzzle,x,y):
_,ds = puzzle[y][x]
drs= [directions[d] for d in ds]
for d in ds:
dx,dy = directions[d]
if 0 <= y+dy < len(puzzle) and 0 <= x+dx < len(puzzle[y+dy]):
t2,ds2 = puzzle[y+dy][x+dx]
if t2 == EMPTY:
continue
if (d+2)%4 not in ds2:
return False
else:
return False
return True
def gettile():
while True:
tile = (WIRE, [i for i in range(4) if random.random() < 0.4])
if len(tile[1]) == 1:
if random.random() < 0.1:
return (random.choice([SINK,SOURCE]), tile[1])
elif len(tile[1]) == 0:
if random.random() < 0.2:
return tile
else:
return tile
def consistent(puzzle,x,y):
if not isWireConnected(puzzle,x,y):
return False
if y > 0:
if not isWireConnected(puzzle,x,y-1):
return False
if x > 0:
if not isWireConnected(puzzle,x-1,y):
return False
return True
def joined(puzzle,x1,y1,x2,y2):
# is there a wire connecting the tiles at x1,y1 and x2,y2
_,ds = puzzle[y1][x1]
_,ds2 = puzzle[y2][x2]
diff = (x2-x1,y2-y1)
if diff not in [(0,1),(1,0),(0,-1),(-1,0)]:
return False
d = directions.index(diff)
return (d+2)%4 in ds2 and d in ds
def neighbours(puzzle,x,y):
_,ds = puzzle[y][x]
for d in ds:
dx,dy = directions[d]
if 0 <= y+dy < len(puzzle) and 0 <= x+dx < len(puzzle[y+dy]):
yield (x+dx,y+dy)
def reachable(puzzle,x,y):
ttype,_ = puzzle[y][x]
found = [(x,y)]
ttype2 = SINK if ttype == SOURCE else SOURCE
assert ttype in [SOURCE,SINK]
flag = True
while flag:
flag = False
for (x1,y1) in found.copy():
for (x2,y2) in neighbours(puzzle,x1,y1):
if (x2,y2) in found:
continue
found.append((x2,y2))
flag = True
if puzzle[y2][x2][0] == ttype2:
return (x2,y2)
return random.choice(found[1:])
seed1=0
def genpuzzle(w,h=None,seed=0):
global seed1
if h is None:
h = w
if seed == 0:
seed = random.randint(0,9223372036854775807)
random.seed(seed)
seed1 = seed
puzzle = [[(EMPTY,[]) for _ in range(w)] for _ in range(h)]
for y in range(h):
for x in range(w):
puzzle[y][x] = gettile()
while not consistent(puzzle,x,y):
puzzle[y][x] = gettile()
numsinks = (w+h)//5 + 1
# add linked source to each sink and vice versa
for y in range(h):
for x in range(w):
if puzzle[y][x][0] in [SOURCE,SINK]:
x2,y2 = reachable(puzzle,x,y)
puzzle[y2][x2] = (3-puzzle[y][x][0],puzzle[y2][x2][1])
for _ in range(numsinks):
x = random.randint(0,w-1)
y = random.randint(0,h-1)
if puzzle[y][x][1] != []:
t1,t2 = random.choice([(SOURCE,SINK),(SINK,SOURCE)])
puzzle[y][x] = (t1,puzzle[y][x][1])
x2,y2 = reachable(puzzle,x,y)
puzzle[y2][x2] = (t2,puzzle[y2][x2][1])
return puzzle
def h(puzzle):
output = "["
for row in reversed(puzzle):
ss = []
for t in row:
s = types[t[0]]# + " "
s += "[" + ",".join(map(lambda x: edges[x], t[1])) + "]"
ss.append(s)
output += "[" + ",".join(ss) + "],"
output = output[:-1] + "]"
return output
def shuf(puzzle):
def rot(rs,x):
return (x[0], list(map(lambda y: (y+rs)%4, x[1])))
return [[rot(random.randint(0,3),t) for t in ln] for ln in puzzle]
if __name__ == '__main__':
try:
p = genpuzzle(N,M)
except NameError:
p = genpuzzle(N)
p_ = shuf(p)
print(h(p))
print('=======================================')
print(h(p_))
p2 = visual.join(p,p_)
visual.show(p2)
|