File size: 16,309 Bytes
ae72b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecf5538
d863e86
46e8dfb
8131f5b
0b8d549
8131f5b
6582d09
8131f5b
6582d09
d863e86
6582d09
abcd2bb
 
 
 
 
 
 
 
 
0b8d549
 
abcd2bb
117ae8e
d6d464a
ae72b3f
 
 
 
 
 
8131f5b
 
 
 
117ae8e
ae72b3f
 
 
 
 
 
 
46e8dfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae72b3f
 
0b8d549
49ca0b5
0b8d549
 
ae72b3f
 
 
117ae8e
46e8dfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abcd2bb
 
 
 
 
 
 
 
46e8dfb
 
 
 
 
938924c
ae72b3f
 
 
938924c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b8d549
938924c
 
 
 
 
 
 
0b8d549
 
 
 
938924c
 
ae72b3f
 
 
8131f5b
 
 
46e8dfb
8131f5b
 
79bf69f
938924c
0b8d549
 
 
9102710
938924c
117ae8e
 
 
 
938924c
af1d6b2
 
abcd2bb
af1d6b2
 
 
938924c
af1d6b2
 
abcd2bb
af1d6b2
 
 
938924c
8131f5b
9102710
abcd2bb
938924c
9102710
b656af9
 
 
46e8dfb
b656af9
 
 
 
117ae8e
938924c
abcd2bb
938924c
8131f5b
 
 
4a995f4
8131f5b
938924c
53d8ba3
 
 
abcd2bb
53d8ba3
 
 
 
 
 
938924c
abcd2bb
938924c
af1d6b2
 
 
 
 
 
 
0b8d549
af1d6b2
 
938924c
b656af9
938924c
 
 
 
8131f5b
abcd2bb
8131f5b
938924c
8131f5b
 
67d8748
8131f5b
 
b656af9
53d8ba3
 
 
 
8131f5b
938924c
8131f5b
b656af9
8131f5b
 
 
 
 
117ae8e
8131f5b
938924c
8131f5b
 
 
938924c
8131f5b
938924c
8131f5b
 
 
 
938924c
8131f5b
53d8ba3
abcd2bb
 
 
 
 
 
938924c
8131f5b
b656af9
 
 
 
938924c
8131f5b
 
 
 
938924c
d6d464a
 
 
 
 
938924c
d6d464a
 
 
 
 
 
938924c
d6d464a
abcd2bb
 
 
 
 
d6d464a
abcd2bb
938924c
b656af9
 
abcd2bb
938924c
abcd2bb
 
 
 
 
 
 
 
 
 
 
938924c
117ae8e
 
 
 
 
 
 
 
 
 
 
 
 
 
938924c
8131f5b
938924c
 
b656af9
938924c
8131f5b
 
b656af9
8131f5b
 
 
 
b656af9
8131f5b
b656af9
 
 
 
8131f5b
 
 
117ae8e
8131f5b
938924c
8131f5b
b656af9
8131f5b
b656af9
8131f5b
 
 
 
117ae8e
8131f5b
938924c
8131f5b
b656af9
8131f5b
b656af9
8131f5b
 
 
 
117ae8e
8131f5b
938924c
117ae8e
 
 
 
ae72b3f
 
8131f5b
d863e86
 
 
abcd2bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# app.py

# This application provides a user interface for HKUST students to browse, search,
# and find accommodations in different neighborhoods of Hong Kong. It features an interactive map
# visualization, listing cards with pricing information, traffic-based discounts, and smart search
# functionality to match user preferences with available properties.

# Key features:
# - Interactive map displaying BNB listings with location markers
# - Neighborhood-based filtering of available accommodations
# - Smart search system that highlights matching terms in descriptions and reviews
# - Traffic-based discount system promoting eco-friendly housing options
# - Detailed view of property reviews with highlighted search terms
# - Responsive pagination for browsing through large sets of listings
# - Loading animations and informative UI elements for better user experience

# The application uses Folium for map visualization, Streamlit for the web interface

# Author: Gordon Li (20317033)
# Company : HKUST Sustainability
# Date: March 2025

import os
import re
import streamlit as st
import streamlit.components.v1 as components
from html import escape
from streamlit_folium import st_folium
import math
from visualiser.hkust_bnb_visualiser import HKUSTBNBVisualiser
from huggingface_hub import login
from constant.hkust_bnb_constant import (
    SIDEBAR_HEADER,
    SIDEBAR_DIVIDER,
    TRAFFIC_EXPLANATION,
    SEARCH_EXPLANATION,
    REVIEW_CARD_TEMPLATE,
    LISTINGS_COUNT_INFO,
    LISTING_CARD_TEMPLATE,
    PRICE_DISPLAY_WITH_DISCOUNT,
    PRICE_DISPLAY_NORMAL,
    RELEVANCE_INFO_LISTING,
    LOTTIE_HTML
)



# Loads CSS styles from a file and applies them to the Streamlit application.
# Parameters:
#    css_file: Path to the CSS file to be loaded


def load_css(css_file):
    with open(css_file) as f:
        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)


# Highlights search terms within text by wrapping them in a span with highlight class.
# Parameters:
#     text: The original text to process
#     search_query: The search terms to highlight within the text
# Returns:
#     Text with highlighted search terms

def highlight_search_terms(text, search_query):
    if not search_query:
        return text

    highlighted_text = text
    search_terms = search_query.lower().split()

    for term in search_terms:
        if term.strip():
            pattern = f'(?i)\\b{term}\\b'
            replacement = f'<span class="highlight">{term}</span>'
            highlighted_text = re.sub(pattern, replacement, highlighted_text)

    return highlighted_text


# Renders a loading animation using Lottie animation in HTML format.

def render_lottie_loading_animation():
    components.html(LOTTIE_HTML, height=750)


# Renders a dialog containing reviews for the currently selected listing.
# Displays reviewer name, review date, and comments with search terms highlighted.

def render_review_dialog():
    with st.container():
        col_title = st.columns([5, 1])
        with col_title[0]:
            st.markdown(f"### Reviews for {st.session_state.current_review_listing_name}")

        reviews = st.session_state.visualizer.get_listing_reviews(st.session_state.current_review_listing)
        if reviews:
            for review in reviews:
                try:
                    review_date, reviewer_name, comments = review

                    highlighted_comments = highlight_search_terms(
                        str(comments),
                        st.session_state.search_query
                    )

                    st.markdown(
                        REVIEW_CARD_TEMPLATE.format(
                            reviewer_name=escape(str(reviewer_name)),
                            review_date=escape(str(review_date)),
                            highlighted_comments=highlighted_comments
                        ),
                        unsafe_allow_html=True
                    )
                except Exception as e:
                    st.error(f"Error displaying review: {str(e)}")
        else:
            st.info("No reviews available for this listing.")


# Initializes the session state with default values for various application parameters.
# Sets up the visualizer and loads required resources for the application.

def initialize_session_state():
    default_states = {
        'center_lat': None,
        'center_lng': None,
        'selected_id': None,
        'current_page': 1,
        'previous_neighborhood': None,
        'items_per_page': 3,
        'search_query': "",
        'tokenizer_loaded': False,
        'show_review_dialog': False,
        'current_review_listing': None,
        'current_review_listing_name': None,
        'show_traffic_explanation': False,
        'show_search_explanation': False,
        'listings_limit': 10,
        'loading_complete': False,
    }

    for key, default_value in default_states.items():
        if key not in st.session_state:
            st.session_state[key] = default_value

    if 'visualizer' not in st.session_state:
        st.session_state.loading_complete = False
        st.session_state.visualizer = HKUSTBNBVisualiser()
        st.session_state.tokenizer_loaded = True
        st.session_state.loading_complete = True


# Main function that sets up the Streamlit application interface.
# Handles page configuration, sidebar setup, map rendering, listing display,
# pagination, and user interactions with the application elements.
def main():
    st.set_page_config(
        layout="wide",
        page_title="HKUST BNB+ | Platform for BNB Matching for HKUST PG Student",
        initial_sidebar_state="expanded"
    )
    load_css('css/style.css')

    if 'loading_complete' not in st.session_state or not st.session_state.loading_complete:
        render_lottie_loading_animation()
        initialize_session_state()
        st.rerun()

    visualizer = st.session_state.visualizer
    if visualizer is None or not hasattr(visualizer, 'neighborhoods'):
        st.error("Error initializing the application. Please refresh the page.")
        return

    if st.session_state.show_traffic_explanation:
        with st.expander("πŸ“Š Traffic-Based Discount System", expanded=True):
            st.markdown(TRAFFIC_EXPLANATION)
            if st.button("Close", key="close_traffic_btn"):
                st.session_state.show_traffic_explanation = False
                st.rerun()

    if st.session_state.show_search_explanation:
        with st.expander("πŸ” Smart Search System", expanded=True):
            st.markdown(SEARCH_EXPLANATION)
            if st.button("Close", key="close_search_btn"):
                st.session_state.show_search_explanation = False
                st.rerun()

    with st.sidebar:
        st.image("css/img.png", width=50)
        st.markdown(SIDEBAR_HEADER, unsafe_allow_html=True)


        search_query = st.text_input(
            "πŸ” Search listings",
            value=st.session_state.search_query,
            placeholder="Try: 'cozy , quiet '"
        )
        if search_query != st.session_state.search_query:
            st.session_state.search_query = search_query
            st.session_state.current_page = 1
            st.session_state.show_review_dialog = False

        st.markdown(SIDEBAR_DIVIDER, unsafe_allow_html=True)

        neighborhood = st.selectbox(
            "Select Neighborhood",
            options=visualizer.neighborhoods,
            index=visualizer.neighborhoods.index("Kowloon City") if "Kowloon City" in visualizer.neighborhoods else 0
        )

        listings_limit = st.selectbox(
            "Number of listings to show",
            options=[10, 20, 30, 40, 50],
            index=0,
            help="Select how many listings to display for this neighborhood"
        )
        if listings_limit != st.session_state.listings_limit:
            st.session_state.listings_limit = listings_limit
            st.session_state.current_page = 1
            st.session_state.show_review_dialog = False

        st.markdown(SIDEBAR_DIVIDER, unsafe_allow_html=True)

        st.markdown("### πŸ’‘ Help & Information")
        col1, col2 = st.columns(2)
        with col1:
            if st.button("Green Discount", key="traffic_info_btn"):
                st.session_state.show_traffic_explanation = True
                st.rerun()
        with col2:
            if st.button("Smart Search", key="search_info_btn"):
                st.session_state.show_search_explanation = True
                st.rerun()

        if st.button("Reset All", key="reset_btn"):
            for key in ['center_lat', 'center_lng', 'selected_id', 'search_query',
                        'show_review_dialog', 'show_traffic_explanation', 'show_search_explanation']:
                st.session_state[key] = None if key in ['center_lat', 'center_lng',
                                                        'selected_id'] else False if 'show_' in key else ""
            st.session_state.current_page = 1
            st.session_state.listings_limit = 10
            st.rerun()

    m, df = visualizer.create_map_and_data(
        neighborhood,
        True,
        st.session_state.center_lat,
        st.session_state.center_lng,
        st.session_state.selected_id,
        st.session_state.search_query,
        st.session_state.current_page,
        st.session_state.items_per_page,
        st.session_state.listings_limit
    )

    if st.session_state.previous_neighborhood != neighborhood:
        st.session_state.current_page = 1
        if not df.empty:
            st.session_state.selected_id = df.iloc[0]['id']
            st.session_state.center_lat = df.iloc[0]['latitude']
            st.session_state.center_lng = df.iloc[0]['longitude']
        st.session_state.previous_neighborhood = neighborhood
        st.session_state.show_review_dialog = False
        st.rerun()

    if m is None:
        st.error("No data available for the selected neighborhood")
        return

    col1, col2 = st.columns([7, 3])

    with col1:
        st.markdown('<div class="map-container">', unsafe_allow_html=True)
        st_folium(m, width=None, height=700)
        st.markdown('</div>', unsafe_allow_html=True)

    with col2:
        st.markdown(
            LISTINGS_COUNT_INFO.format(
                listings_limit=st.session_state.listings_limit,
                neighborhood=neighborhood
            ),
            unsafe_allow_html=True
        )

        total_items = len(df)
        total_pages = math.ceil(total_items / st.session_state.items_per_page)
        st.session_state.current_page = min(max(1, st.session_state.current_page), total_pages)
        start_idx = (st.session_state.current_page - 1) * st.session_state.items_per_page
        end_idx = min(start_idx + st.session_state.items_per_page, total_items)

        st.markdown('<div class="scrollable-container">', unsafe_allow_html=True)
        for idx in range(start_idx, end_idx):
            row = df.iloc[idx]
            background_color = "#E3F2FD" if st.session_state.selected_id == row['id'] else "white"

            discounted_price = row['price']
            discount_tag = ""
            listing_lat = row['latitude']
            listing_lng = row['longitude']
            nearest_spot, distance = visualizer.find_nearest_traffic_spot(listing_lat, listing_lng)

            if nearest_spot:
                discount_rate = nearest_spot.get_discount_rate()
                if discount_rate > 0:
                    discounted_price = row['price'] * (1 - discount_rate)
                    discount_percentage = int(discount_rate * 100)
                    discount_tag = f"""<span class="discount-tag">-{discount_percentage}%</span>"""

            if discount_tag:
                price_display = PRICE_DISPLAY_WITH_DISCOUNT.format(
                    original_price=row['price'],
                    discounted_price=discounted_price,
                    discount_tag=discount_tag
                )
            else:
                price_display = PRICE_DISPLAY_NORMAL.format(price=row['price'])

            relevance_info = ""
            if st.session_state.search_query and 'relevance_percentage' in row:
                relevance_info = RELEVANCE_INFO_LISTING.format(relevance_percentage=row['relevance_percentage'])

            st.markdown(
                LISTING_CARD_TEMPLATE.format(
                    background_color=background_color,
                    listing_name=escape(str(row['name'])),
                    price_display=price_display,
                    room_type=escape(str(row['room_type'])),
                    review_count=row['number_of_reviews'],
                    relevance_info=relevance_info
                ),
                unsafe_allow_html=True
            )

            col_details, col_reviews = st.columns(2)
            with col_details:
                if st.button("View Details", key=f"btn_{row['id']}"):
                    st.session_state.selected_id = row['id']
                    st.session_state.center_lat = row['latitude']
                    st.session_state.center_lng = row['longitude']
                    st.rerun()
            with col_reviews:
                if st.button("View Reviews", key=f"review_btn_{row['id']}"):
                    st.session_state.show_review_dialog = True
                    st.session_state.current_review_listing = row['id']
                    st.session_state.current_review_listing_name = row['name']
                    st.session_state.scroll_to_review = True
                    st.rerun()

        st.markdown('</div>', unsafe_allow_html=True)

        # Pagination controls
        col_prev, col_select, col_next = st.columns([1, 1, 1])

        with col_select:
            page_options = list(range(1, total_pages + 1))
            new_page = st.selectbox(
                "Go to page",
                options=page_options,
                index=st.session_state.current_page - 1,
                key="page_selector",
                label_visibility="collapsed"
            )
            if new_page != st.session_state.current_page:
                st.session_state.current_page = new_page
                new_start_idx = (new_page - 1) * st.session_state.items_per_page
                if not df.empty and new_start_idx < len(df):
                    st.session_state.selected_id = df.iloc[new_start_idx]['id']
                    st.session_state.center_lat = df.iloc[new_start_idx]['latitude']
                    st.session_state.center_lng = df.iloc[new_start_idx]['longitude']
                st.session_state.show_review_dialog = False
                st.rerun()

        with col_prev:
            if st.button("← Previous", disabled=st.session_state.current_page <= 1):
                st.session_state.current_page -= 1
                new_start_idx = (st.session_state.current_page - 1) * st.session_state.items_per_page
                if not df.empty:
                    st.session_state.selected_id = df.iloc[new_start_idx]['id']
                    st.session_state.center_lat = df.iloc[new_start_idx]['latitude']
                    st.session_state.center_lng = df.iloc[new_start_idx]['longitude']
                st.session_state.show_review_dialog = False
                st.rerun()

        with col_next:
            if st.button("Next β†’", disabled=st.session_state.current_page >= total_pages):
                st.session_state.current_page += 1
                new_start_idx = (st.session_state.current_page - 1) * st.session_state.items_per_page
                if not df.empty:
                    st.session_state.selected_id = df.iloc[new_start_idx]['id']
                    st.session_state.center_lat = df.iloc[new_start_idx]['latitude']
                    st.session_state.center_lng = df.iloc[new_start_idx]['longitude']
                st.session_state.show_review_dialog = False
                st.rerun()

    if st.session_state.show_review_dialog:
        render_review_dialog()


# Main entry point for the application. Authenticates with Hugging Face if a token is available,
# then calls the main function to start the application.
if __name__ == "__main__":
    token = os.environ.get("HF_TOKEN")
    if token:
        login(token=token)
    main()