File size: 16,336 Bytes
37a9836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
codes adapted from https://github.com/suno-ai/bark
"""

import math
from dataclasses import dataclass

import torch
import torch.nn as nn
from torch.nn import functional as F


@dataclass
class GPTConfig:
    block_size: int = 1024
    input_vocab_size: int = 10_048
    output_vocab_size: int = 10_048
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768
    dropout: float = 0.0
    bias: bool = (
        True  # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
    )


@dataclass
class FineGPTConfig(GPTConfig):
    n_codes_total: int = 8
    n_codes_given: int = 1


class LayerNorm(nn.Module):
    """LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False"""

    def __init__(self, ndim: int, bias: bool) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(ndim))
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)


class MLP(nn.Module):

    def __init__(self, config: GPTConfig):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)
        self.gelu = nn.GELU()

    def forward(self, x) -> torch.Tensor:
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x


class CausalSelfAttention(nn.Module):
    def __init__(self, config: GPTConfig) -> None:
        super().__init__()
        assert config.n_embd % config.n_head == 0

        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        # regularization
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        # flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary
        self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention")
        if not self.flash:
            # print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0")
            # causal mask to ensure that attention is only applied to the left in the input sequence
            self.register_buffer(
                "bias",
                torch.tril(torch.ones(config.block_size, config.block_size)).view(
                    1, 1, config.block_size, config.block_size
                ),
            )

    def forward(
        self, x: torch.Tensor, past_kv: torch.Tensor = None, use_cache: bool = False
    ):
        B, T, C = (
            x.size()
        )  # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)

        if past_kv is not None:
            past_key = past_kv[0]
            past_value = past_kv[1]
            k = torch.cat((past_key, k), dim=-2)
            v = torch.cat((past_value, v), dim=-2)

        FULL_T = k.shape[-2]

        if use_cache is True:
            present = (k, v)
        else:
            present = None

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if self.flash:
            # efficient attention using Flash Attention CUDA kernels
            if past_kv is not None:
                # When `past_kv` is provided, we're doing incremental decoding and `q.shape[2] == 1`: q only contains
                # the query for the last token. scaled_dot_product_attention interprets this as the first token in the
                # sequence, so if is_causal=True it will mask out all attention from it. This is not what we want, so
                # to work around this we set is_causal=False.
                is_causal = False
            else:
                is_causal = True

            y = torch.nn.functional.scaled_dot_product_attention(
                q, k, v, dropout_p=self.dropout, is_causal=is_causal
            )
        else:
            # manual implementation of attention
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = att.masked_fill(
                self.bias[:, :, FULL_T - T : FULL_T, :FULL_T] == 0, float("-inf")
            )
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v  # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = (
            y.transpose(1, 2).contiguous().view(B, T, C)
        )  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_dropout(self.c_proj(y))
        return (y, present)


class Block(nn.Module):

    def __init__(self, config: GPTConfig, layer_idx: int) -> None:
        super().__init__()
        self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config)
        self.layer_idx = layer_idx

    def forward(
        self, x: torch.Tensor, past_kv: torch.Tensor = None, use_cache: bool = False
    ):
        attn_output, prev_kvs = self.attn(
            self.ln_1(x), past_kv=past_kv, use_cache=use_cache
        )
        x = x + attn_output
        x = x + self.mlp(self.ln_2(x))
        return (x, prev_kvs)


class GPT(nn.Module):
    def __init__(self, config: GPTConfig):
        super().__init__()
        assert config.input_vocab_size is not None
        assert config.output_vocab_size is not None
        assert config.block_size is not None
        self.config = config

        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.input_vocab_size, config.n_embd),
                wpe=nn.Embedding(config.block_size, config.n_embd),
                drop=nn.Dropout(config.dropout),
                h=nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]),
                ln_f=LayerNorm(config.n_embd, bias=config.bias),
            )
        )
        self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False)
        # Note: lm_head lacks bias, implying parameter sharing with wte for efficiency

    def get_num_params(self, non_embedding: bool = True) -> int:
        """
        Return the number of parameters in the model.
        For non-embedding count (default), the position embeddings get subtracted.
        The token embeddings would too, except due to the parameter sharing these
        params are actually used as weights in the final layer, so we include them.
        """
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding:
            n_params -= self.transformer.wte.weight.numel()
            n_params -= self.transformer.wpe.weight.numel()
        return n_params

    def forward(
        self,
        idx: torch.Tensor,
        merge_context: bool = False,
        past_kv: torch.Tensor = None,
        position_ids: torch.Tensor = None,
        use_cache: bool = False,
    ):
        device = idx.device
        b, t = idx.size()
        if past_kv is not None:
            # When past_kv is provided, this is optimized for autoregressive generation
            assert (
                t == 1
            ), "should only pass in the last token of the sequence when using kv_cache"
            # Shape: (b, 1, n_embd), single token case
            tok_emb = self.transformer.wte(idx)
        else:
            if merge_context:
                # Custom feature: assumes first 256 tokens are one context, next 256 another, rest is sequence
                assert idx.shape[1] >= 256 + 256 + 1
                t = idx.shape[1] - 256  # Adjusts t for merged context length
            else:
                assert (
                    t <= self.config.block_size
                ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"

            if merge_context:
                # Merges two contexts by adding their embeddings, not a standard GPT behavior
                tok_emb = torch.cat(
                    [
                        self.transformer.wte(idx[:, :256])
                        + self.transformer.wte(idx[:, 256 : 256 + 256]),
                        self.transformer.wte(idx[:, 256 + 256 :]),
                    ],
                    dim=1,
                )
            else:
                tok_emb = self.transformer.wte(idx)

        if past_kv is None:
            past_length = 0
            # Empty cache for each layer
            past_kv = tuple([None] * len(self.transformer.h))
        else:
            # Infers prior sequence length from cache
            past_length = past_kv[0][0].size(-2)

        if position_ids is None:
            position_ids = torch.arange(
                past_length, t + past_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0)
            assert position_ids.shape == (1, t)

        pos_emb = self.transformer.wpe(position_ids)

        x = self.transformer.drop(tok_emb + pos_emb)

        # Prepares cache for key-value pairs if enabled
        new_kv = () if use_cache else None

        for i, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)):
            x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache)
            if use_cache:
                new_kv = new_kv + (kv,)  # Accumulates new key-value pairs for caching

        x = self.transformer.ln_f(x)

        # Optimization: only computes logits for the last token, efficient for generation
        logits = self.lm_head(x[:, [-1], :])  # Preserves time dim with [-1]

        return (
            logits,
            new_kv,
        )  # Returns tuple: logits for next token, cache if requested


class NonCausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        # regularization
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
        self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention")

    def forward(self, x):
        B, T, C = (
            x.size()
        )  # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(
            1, 2
        )  # (B, nh, T, hs)

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        if self.flash:
            # efficient attention using Flash Attention CUDA kernels
            y = torch.nn.functional.scaled_dot_product_attention(
                q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False
            )
        else:
            # manual implementation of attention
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v  # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = (
            y.transpose(1, 2).contiguous().view(B, T, C)
        )  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_dropout(self.c_proj(y))
        return y


class FineBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = NonCausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class FineGPT(GPT):
    def __init__(self, config):
        super().__init__(config)
        del self.lm_head
        self.config = config
        self.n_codes_total = config.n_codes_total
        self.transformer = nn.ModuleDict(
            dict(
                wtes=nn.ModuleList(
                    [
                        nn.Embedding(config.input_vocab_size, config.n_embd)
                        for _ in range(config.n_codes_total)
                    ]
                ),
                wpe=nn.Embedding(config.block_size, config.n_embd),
                drop=nn.Dropout(config.dropout),
                h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]),
                ln_f=nn.LayerNorm(config.n_embd),
            )
        )
        self.lm_heads = nn.ModuleList(
            [
                nn.Linear(config.n_embd, config.output_vocab_size, bias=False)
                for _ in range(config.n_codes_given, self.n_codes_total)
            ]
        )
        for i in range(self.n_codes_total - config.n_codes_given):
            self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight

    def forward(self, pred_idx, idx):
        device = idx.device
        b, t, codes = idx.size()
        assert (
            t <= self.config.block_size
        ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        assert pred_idx > 0, "cannot predict 0th codebook"
        assert codes == self.n_codes_total, (b, t, codes)
        pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(
            0
        )  # shape (1, t)

        # forward the GPT model itself
        tok_embs = [
            wte(idx[:, :, i]).unsqueeze(-1)
            for i, wte in enumerate(self.transformer.wtes)
        ]  # token embeddings of shape (b, t, n_embd)
        tok_emb = torch.cat(tok_embs, dim=-1)
        pos_emb = self.transformer.wpe(
            pos
        )  # position embeddings of shape (1, t, n_embd)
        x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1)
        x = self.transformer.drop(x + pos_emb)
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        logits = self.lm_heads[pred_idx - self.config.n_codes_given](x)
        return logits

    def get_num_params(self, non_embedding=True):
        """
        Return the number of parameters in the model.
        For non-embedding count (default), the position embeddings get subtracted.
        The token embeddings would too, except due to the parameter sharing these
        params are actually used as weights in the final layer, so we include them.
        """
        n_params = sum(p.numel() for p in self.parameters())
        if non_embedding:
            for wte in self.transformer.wtes:
                n_params -= wte.weight.numel()
            n_params -= self.transformer.wpe.weight.numel()
        return n_params