File size: 11,285 Bytes
de8e0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from manim import *
import numpy as np

# Render with:
# manim -ql storyboard.py StoryboardScene -o video.mp4

class StoryboardScene(MovingCameraScene):
    def construct(self):
        # Palette
        DIAMOND_COLOR = GREY_B
        N_COLOR = TEAL_C
        VACANCY_COLOR = RED_B
        LEVEL_COLOR = BLUE_E
        SINGLET_COLOR = YELLOW_B
        EMIT_COLOR = RED_B

        # Helper: build a simple 2D diamond-like lattice with an NV- center (N + vacancy)
        def create_lattice(rows=6, cols=8, spacing=0.6, r_dot=0.06):
            dots = VGroup()
            positions = {}
            for i in range(rows):
                for j in range(cols):
                    offset = (spacing / 2) if (i % 2 == 1) else 0
                    x = (j * spacing) + offset - (cols * spacing) / 2
                    y = (i * spacing * 0.85) - (rows * spacing * 0.85) / 2
                    d = Dot(point=np.array([x, y, 0]), radius=r_dot, color=DIAMOND_COLOR)
                    dots.add(d)
                    positions[(i, j)] = d.get_center()
            # Choose central site for N and adjacent site for vacancy
            ic = rows // 2
            jc = cols // 2
            nv_pos = positions[(ic, jc)]
            # Pick vacancy to the right if possible
            if (ic, jc + 1) in positions:
                vac_pos = positions[(ic, jc + 1)]
            else:
                vac_pos = positions[(ic, jc - 1)]

            # Replace central carbon with Nitrogen
            N = Dot(point=nv_pos, radius=r_dot * 1.5, color=N_COLOR)
            N_label = Text("N", font_size=22, color=N_COLOR).next_to(N, UP)

            # Remove the dot at vacancy position
            vac_circle = Circle(radius=r_dot * 1.6, color=VACANCY_COLOR, stroke_width=4).move_to(vac_pos)
            V_label = MathTex(r"V^{-}", color=VACANCY_COLOR).scale(0.6).next_to(vac_circle, DOWN)

            # Remove the vacancy carbon dot from dots (find by position)
            to_remove = None
            for d in dots:
                if np.allclose(d.get_center(), vac_pos):
                    to_remove = d
                    break
            if to_remove:
                dots.remove(to_remove)

            lattice_group = VGroup(dots, N, vac_circle, N_label, V_label)

            # Find three nearest neighbors to N (excluding vacancy) for later bonds
            carbon_positions = [d.get_center() for d in dots]
            dists = sorted([(np.linalg.norm(p - nv_pos), p) for p in carbon_positions], key=lambda x: x[0])
            neighbors = []
            for _, p in dists:
                if len(neighbors) >= 4:
                    break
                if np.allclose(p, vac_pos):
                    continue
                neighbors.append(p)
            neighbors = neighbors[:3]
            bonds = VGroup(*[Line(N.get_center(), p, color=DIAMOND_COLOR, stroke_width=3) for p in neighbors])

            return lattice_group, dots, N, vac_circle, N_label, V_label, bonds, nv_pos

        # Helper: Energy level diagram for NV-
        def create_energy_diagram():
            # Axis
            E_axis = Arrow(start=LEFT * 5 + DOWN * 2.5, end=LEFT * 5 + UP * 2.5, buff=0, stroke_width=4, color=GREY_B)
            E_label = Text("Energy", font_size=24, color=GREY_B).next_to(E_axis, RIGHT, buff=0.2)

            # Ground triplet (3A2): ms=0 lower, ms=±1 slightly higher (two lines)
            xL, xR = -3.0, 3.0
            y_g0 = -1.6
            y_gpm1a = -1.2
            y_gpm1b = -1.05
            g0 = Line([xL, y_g0, 0], [xR, y_g0, 0], color=LEVEL_COLOR, stroke_width=5)
            gpm1a = Line([xL, y_gpm1a, 0], [xR, y_gpm1a, 0], color=LEVEL_COLOR, stroke_width=5)
            gpm1b = Line([xL, y_gpm1b, 0], [xR, y_gpm1b, 0], color=LEVEL_COLOR, stroke_width=5)
            g_label = MathTex(r"{}^3A_2", color=LEVEL_COLOR).scale(0.8).next_to(g0, LEFT, buff=0.5)
            g_m0 = MathTex(r"m_s=0", color=LEVEL_COLOR).scale(0.6).next_to(g0, RIGHT, buff=0.3)
            g_mpm1 = MathTex(r"m_s=\pm 1", color=LEVEL_COLOR).scale(0.6).next_to(gpm1b, RIGHT, buff=0.3)

            # Excited triplet (3E): similar splitting
            y_e0 = 1.6
            y_epm1a = 2.0
            y_epm1b = 2.15
            e0 = Line([xL, y_e0, 0], [xR, y_e0, 0], color=LEVEL_COLOR, stroke_width=5)
            epm1a = Line([xL, y_epm1a, 0], [xR, y_epm1a, 0], color=LEVEL_COLOR, stroke_width=5)
            epm1b = Line([xL, y_epm1b, 0], [xR, y_epm1b, 0], color=LEVEL_COLOR, stroke_width=5)
            e_label = MathTex(r"{}^3E", color=LEVEL_COLOR).scale(0.8).next_to(e0, LEFT, buff=0.5)
            e_m0 = MathTex(r"m_s=0", color=LEVEL_COLOR).scale(0.6).next_to(e0, RIGHT, buff=0.3)
            e_mpm1 = MathTex(r"m_s=\pm 1", color=LEVEL_COLOR).scale(0.6).next_to(epm1b, RIGHT, buff=0.3)

            # Singlet shelving state (simplified as one line)
            y_s = 0.3
            s = Line([xL * 0.5, y_s, 0], [xR * 0.5, y_s, 0], color=SINGLET_COLOR, stroke_width=5)
            s_label = Text("Singlet", font_size=24, color=SINGLET_COLOR).next_to(s, RIGHT, buff=0.3)

            # Transitions
            radiative = Arrow(start=[0.0, y_e0 - 0.05, 0], end=[0.0, y_g0 + 0.05, 0],
                              buff=0, color=EMIT_COLOR, stroke_width=5)
            y_epm_avg = 0.5 * (y_epm1a + y_epm1b)
            nr1 = Arrow(start=[1.5, y_epm_avg - 0.05, 0], end=[1.0, y_s + 0.05, 0],
                        buff=0, color=SINGLET_COLOR, stroke_width=5)
            nr2 = Arrow(start=[1.0, y_s - 0.05, 0], end=[0.5, y_g0 + 0.05, 0],
                        buff=0, color=SINGLET_COLOR, stroke_width=5)

            levels = VGroup(g0, gpm1a, gpm1b, e0, epm1a, epm1b, s)
            labels = VGroup(g_label, e_label, g_m0, g_mpm1, e_m0, e_mpm1, s_label)
            arrows = VGroup(radiative, nr1, nr2)
            axis = VGroup(E_axis, E_label)
            diagram = VGroup(axis, levels, labels, arrows)
            return diagram, axis, levels, labels, arrows

        # -------------------------
        # Scene 1: Introduction to NV- Center (8 s)
        # -------------------------
        lattice_group, dots, N_dot, vac_circle, N_label, V_label, bonds, nv_pos = create_lattice()
        title = Text("NV- center in diamond", font_size=30, color=GREY_B).to_edge(UP)
        highlight = Circle(radius=0.6, color=N_COLOR, stroke_width=3).move_to((N_dot.get_center() + vac_circle.get_center()) / 2)

        self.play(FadeIn(lattice_group), FadeIn(title), run_time=1.0)
        self.play(Create(highlight), run_time=0.6)
        self.play(highlight.animate.scale(1.2), run_time=0.7)
        self.wait(5.7)  # total 8.0 s

        # -------------------------
        # Scene 2: Structure of the NV- Center (8 s)
        # -------------------------
        self.play(self.camera.frame.animate.scale(0.6).move_to(N_dot.get_center()), run_time=1.2)
        if len(bonds) > 0:
            self.play(Create(bonds), run_time=0.8)
        self.play(Indicate(N_label, color=N_COLOR), Indicate(V_label, color=VACANCY_COLOR), run_time=0.6)
        self.wait(5.4)  # total 8.0 s

        # -------------------------
        # Scene 3: Energy Level Diagram (12 s)
        # -------------------------
        # Clear lattice and show energy levels
        self.play(FadeOut(VGroup(lattice_group, title, highlight, bonds)), run_time=0.6)
        energy_diagram, axis, levels, labels, arrows = create_energy_diagram()
        energy_diagram.shift(DOWN * 0.3)  # small center tweak

        self.play(FadeIn(axis), FadeIn(levels), run_time=2.0)
        self.play(FadeIn(labels), run_time=0.8)
        self.play(GrowArrow(arrows[0]), run_time=0.8)  # radiative
        self.play(GrowArrow(arrows[1]), run_time=0.8)  # nonradiative e->singlet
        self.play(GrowArrow(arrows[2]), run_time=0.8)  # singlet->ground
        self.wait(6.2)  # total 12.0 s

        # -------------------------
        # Scene 4: Emission in the Red Region (7 s)
        # -------------------------
        self.play(FadeOut(energy_diagram), run_time=0.6)

        # Minimal NV- motif for emission
        nv_group = VGroup(
            Dot(ORIGIN, radius=0.09, color=N_COLOR),  # place at origin for this beat
            Circle(radius=0.12, color=VACANCY_COLOR, stroke_width=4).shift(RIGHT * 0.25)
        )
        nv_group.move_to(ORIGIN)
        red_label = Text("Red emission ~637 nm", font_size=28, color=EMIT_COLOR).to_edge(UP).shift(DOWN * 0.2)

        self.play(FadeIn(nv_group), run_time=0.6)

        # Emission pulses from NV center (from N position)
        emitter_point = nv_group[0].get_center()  # Dot at origin
        pulse1 = Circle(radius=0.15, color=EMIT_COLOR, stroke_width=4).move_to(emitter_point)
        pulse2 = Circle(radius=0.15, color=EMIT_COLOR, stroke_width=4).move_to(emitter_point)

        self.play(pulse1.animate.scale(3.0), run_time=1.0)
        self.play(FadeOut(pulse1), run_time=0.3)
        self.play(pulse2.animate.scale(3.0), run_time=1.0)
        self.play(FadeOut(pulse2), run_time=0.3)
        self.play(FadeIn(red_label), run_time=0.6)
        self.wait(2.6)  # total 7.0 s

        # -------------------------
        # Scene 5: Real-World Applications (10 s)
        # -------------------------
        self.play(nv_group.animate.shift(LEFT * 3.0), run_time=0.6)

        # Magnet icon (quantum sensing): simple U-shape from rectangles
        bar_left = Rectangle(height=1.6, width=0.25, color=BLUE_E, fill_opacity=1).move_to(RIGHT * 2.2 + UP * 0.6)
        bar_right = Rectangle(height=1.6, width=0.25, color=BLUE_E, fill_opacity=1).move_to(RIGHT * 3.0 + UP * 0.6)
        bridge = Rectangle(height=0.25, width=0.8, color=BLUE_E, fill_opacity=1).move_to(RIGHT * 2.6 + UP * 1.4)
        magnet = VGroup(bar_left, bar_right, bridge)

        # Chip icon (quantum tech/computing)
        chip_body = Rectangle(height=1.2, width=1.8, color=GREY_B, fill_opacity=0).move_to(RIGHT * 2.6 + DOWN * 1.0)
        trace1 = Line(chip_body.get_left() + RIGHT * 0.15 + UP * 0.3, chip_body.get_right() - RIGHT * 0.15 + UP * 0.3,
                      color=TEAL_C, stroke_width=3)
        trace2 = Line(chip_body.get_left() + RIGHT * 0.15, chip_body.get_right() - RIGHT * 0.15,
                      color=TEAL_C, stroke_width=3)
        trace3 = Line(chip_body.get_left() + RIGHT * 0.15 + DOWN * 0.3, chip_body.get_right() - RIGHT * 0.15 + DOWN * 0.3,
                      color=TEAL_C, stroke_width=3)
        chip = VGroup(chip_body, trace1, trace2, trace3)

        # Arrows from NV to icons
        arrow_to_magnet = Arrow(start=nv_group.get_right(), end=bar_left.get_left() + LEFT * 0.1, color=GREY_B, buff=0.1)
        arrow_to_chip = Arrow(start=nv_group.get_right(), end=chip_body.get_left() + LEFT * 0.1, color=GREY_B, buff=0.1)

        label_magnet = Text("Quantum sensing", font_size=26, color=BLUE_E).next_to(magnet, UP, buff=0.25)
        label_chip = Text("Quantum tech & computing", font_size=26, color=TEAL_C).next_to(chip, DOWN, buff=0.25)

        self.play(FadeIn(magnet), run_time=0.6)
        self.play(FadeIn(chip), run_time=0.6)
        self.play(GrowArrow(arrow_to_magnet), GrowArrow(arrow_to_chip), run_time=0.8)
        self.play(FadeIn(label_magnet), FadeIn(label_chip), run_time=0.6)
        self.wait(6.8)  # total 10.0 s (Grand total 45.0 s)