File size: 23,224 Bytes
910b9ab
 
 
 
 
dab1483
910b9ab
e510889
910b9ab
 
 
 
 
 
 
e510889
910b9ab
 
 
e510889
910b9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab1483
910b9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import os
import PIL
import cv2
import time
import torch
import spaces
import numpy as np
import gradio as gr
from PIL import Image
from torch import autocast
from contextlib import nullcontext
from itertools import islice
from omegaconf import OmegaConf
from einops import rearrange, repeat
from pytorch_lightning import seed_everything

from ldm.util import instantiate_from_config
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from gradio_image_annotation import image_annotator


DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
CONFIG_PATH = "./configs/stable-diffusion/v2-inference.yaml"
CKPT_PATH = "./ckpt/v2-1_512-ema-pruned.ckpt"
if not os.path.exists(CKPT_PATH):
    # automatically download the checkpoint if it doesn't exist
    print(f"Checkpoint {CKPT_PATH} not found, downloading from huggingface")
    os.system(f"wget -O {CKPT_PATH} https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt")
CONFIG = OmegaConf.load(CONFIG_PATH)


def load_img(image, SCALE, pad=False, seg_map=False, target_size=None):
    if seg_map:
        # Load the input image and segmentation map
        # image = Image.open(path).convert("RGB")
        # seg_map = Image.open(seg).convert("1")

        seg_map = seg_map.convert("1")
        # Get the width and height of the original image
        w, h = image.size

        # Calculate the aspect ratio of the original image
        aspect_ratio = h / w

        # Determine the new dimensions for resizing the image while maintaining aspect ratio
        if aspect_ratio > 1:
            new_w = int(SCALE * 256 / aspect_ratio)
            new_h = int(SCALE * 256)
        else:
            new_w = int(SCALE * 256)
            new_h = int(SCALE * 256 * aspect_ratio)

        # Resize the image and the segmentation map to the new dimensions
        image_resize = image.resize((new_w, new_h))
        segmentation_map_resize = cv2.resize(np.array(seg_map).astype(np.uint8), (new_w, new_h), interpolation=cv2.INTER_NEAREST)

        # Pad the segmentation map to match the target size
        padded_segmentation_map = np.zeros((target_size[1], target_size[0]))
        start_x = (target_size[1] - segmentation_map_resize.shape[0]) // 2
        start_y = (target_size[0] - segmentation_map_resize.shape[1]) // 2
        padded_segmentation_map[start_x : start_x + segmentation_map_resize.shape[0], start_y : start_y + segmentation_map_resize.shape[1]] = (
            segmentation_map_resize
        )

        # Create a new RGB image with the target size and place the resized image in the center
        padded_image = Image.new("RGB", target_size)
        start_x = (target_size[0] - image_resize.width) // 2
        start_y = (target_size[1] - image_resize.height) // 2
        padded_image.paste(image_resize, (start_x, start_y))

        # Update the variable "image" to contain the final padded image
        image = padded_image
    else:
        # image = Image.open(path).convert("RGB")
        w, h = image.size
        # print(f"loaded input image of size ({w}, {h}) from {path}")
        w, h = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
        w = h = 512
        image = image.resize((w, h), resample=PIL.Image.LANCZOS)

    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)

    if pad or seg_map:
        return 2.0 * image - 1.0, new_w, new_h, padded_segmentation_map

    return 2.0 * image - 1.0, w, h


def load_model_and_get_prompt_embedding(model, scale, device, prompts, inv=False):
    if inv:
        inv_emb = model.get_learned_conditioning(prompts, inv)
        c = uc = inv_emb
    else:
        inv_emb = None

    if scale != 1.0:
        uc = model.get_learned_conditioning([""])
    else:
        uc = None
    c = model.get_learned_conditioning(prompts)

    return c, uc, inv_emb


def chunk(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())


def load_model_from_config(config, ckpt, gpu, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location=gpu)
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model.eval()
    return model


MODEL = load_model_from_config(CONFIG, CKPT_PATH, DEVICE)
MODEL.to(device=DEVICE)


@spaces.GPU(duration=60)
def tficon(img_with_mask, ref_img, seg, prompt, dpm_order, dpm_steps, tau_a, tau_b, domain, seed, scale):
    init_img = img_with_mask["image"]
    n_samples = 1
    precision = "autocast"
    ddim_eta = 0.0
    dpm_order = int(dpm_order[0])

    scale = scale

    device = DEVICE
    model = MODEL
    batch_size = n_samples
    sampler = DPMSolverSampler(model)

    seed_everything(seed)
    # img = cv2.imread(mask, 0)
    # # Threshold the image to create binary image
    # _, binary = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
    # # Find the contours of the white region in the image
    # contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # # Find the bounding rectangle of the largest contour
    # x, y, new_w, new_h = cv2.boundingRect(contours[0])
    # Calculate the center of the rectangle

    bbox = img_with_mask["boxes"][0]
    x = bbox["xmin"]
    y = bbox["ymin"]
    new_w = bbox["xmax"] - bbox["xmin"]
    new_h = bbox["ymax"] - bbox["ymin"]

    center_x = x + new_w / 2
    center_y = y + new_h / 2
    # Calculate the percentage from the top and left
    center_row_from_top = round(center_y / 512, 2)
    center_col_from_left = round(center_x / 512, 2)

    aspect_ratio = new_h / new_w

    if aspect_ratio > 1:
        mask_scale = new_w * aspect_ratio / 256
        mask_scale = new_h / 256
    else:
        mask_scale = new_w / 256
        mask_scale = new_h / (aspect_ratio * 256)

    # mask_scale = round(mask_scale, 2)

    # =============================================================================================

    data = [batch_size * [prompt]]
    # read background image
    init_image, target_width, target_height = load_img(init_img, mask_scale)
    init_image = repeat(init_image.to(device), "1 ... -> b ...", b=batch_size)
    save_image = init_image.clone()

    # read foreground image and its segmentation map
    ref_image, width, height, segmentation_map = load_img(ref_img, mask_scale, seg_map=seg, target_size=(target_width, target_height))
    ref_image = repeat(ref_image.to(device), "1 ... -> b ...", b=batch_size)

    segmentation_map_orig = repeat(torch.tensor(segmentation_map)[None, None, ...].to(device), "1 1 ... -> b 4 ...", b=batch_size)
    segmentation_map_save = repeat(torch.tensor(segmentation_map)[None, None, ...].to(device), "1 1 ... -> b 3 ...", b=batch_size)
    segmentation_map = segmentation_map_orig[:, :, ::8, ::8].to(device)

    top_rr = int((0.5 * (target_height - height)) / target_height * init_image.shape[2])  # xx% from the top
    bottom_rr = int((0.5 * (target_height + height)) / target_height * init_image.shape[2])
    left_rr = int((0.5 * (target_width - width)) / target_width * init_image.shape[3])  # xx% from the left
    right_rr = int((0.5 * (target_width + width)) / target_width * init_image.shape[3])

    center_row_rm = int(center_row_from_top * target_height)
    center_col_rm = int(center_col_from_left * target_width)

    step_height2, remainder = divmod(height, 2)
    step_height1 = step_height2 + remainder
    step_width2, remainder = divmod(width, 2)
    step_width1 = step_width2 + remainder

    # compositing in pixel space for same-domain composition
    save_image[:, :, center_row_rm - step_height1 : center_row_rm + step_height2, center_col_rm - step_width1 : center_col_rm + step_width2] = (
        save_image[
            :, :, center_row_rm - step_height1 : center_row_rm + step_height2, center_col_rm - step_width1 : center_col_rm + step_width2
        ].clone()
        * (1 - segmentation_map_save[:, :, top_rr:bottom_rr, left_rr:right_rr])
        + ref_image[:, :, top_rr:bottom_rr, left_rr:right_rr].clone() * segmentation_map_save[:, :, top_rr:bottom_rr, left_rr:right_rr]
    )

    # save the mask and the pixel space composited image
    save_mask = torch.zeros_like(init_image)
    save_mask[:, :, center_row_rm - step_height1 : center_row_rm + step_height2, center_col_rm - step_width1 : center_col_rm + step_width2] = 1

    # image = Image.fromarray(((save_image/torch.max(save_image.max(), abs(save_image.min())) + 1) * 127.5)[0].permute(1,2,0).to(dtype=torch.uint8).cpu().numpy())
    precision_scope = autocast if precision == "autocast" else nullcontext

    # image composition
    with torch.no_grad():
        with precision_scope("cuda"):
            for prompts in data:
                print(prompts)
                c, uc, inv_emb = load_model_and_get_prompt_embedding(model, scale, device, prompts, inv=True)

                if domain == "Real Domain":  # same domain
                    init_image = save_image

                T1 = time.time()
                init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image))

                # ref's location in ref image in the latent space
                top_rr = int((0.5 * (target_height - height)) / target_height * init_latent.shape[2])
                bottom_rr = int((0.5 * (target_height + height)) / target_height * init_latent.shape[2])
                left_rr = int((0.5 * (target_width - width)) / target_width * init_latent.shape[3])
                right_rr = int((0.5 * (target_width + width)) / target_width * init_latent.shape[3])

                new_height = bottom_rr - top_rr
                new_width = right_rr - left_rr

                step_height2, remainder = divmod(new_height, 2)
                step_height1 = step_height2 + remainder
                step_width2, remainder = divmod(new_width, 2)
                step_width1 = step_width2 + remainder

                center_row_rm = int(center_row_from_top * init_latent.shape[2])
                center_col_rm = int(center_col_from_left * init_latent.shape[3])

                param = [
                    max(0, int(center_row_rm - step_height1)),
                    min(init_latent.shape[2] - 1, int(center_row_rm + step_height2)),
                    max(0, int(center_col_rm - step_width1)),
                    min(init_latent.shape[3] - 1, int(center_col_rm + step_width2)),
                ]

                ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref_image))

                shape = [init_latent.shape[1], init_latent.shape[2], init_latent.shape[3]]
                z_enc, _ = sampler.sample(
                    steps                        = dpm_steps,
                    inv_emb                      = inv_emb,
                    unconditional_conditioning   = uc,
                    conditioning                 = c,
                    batch_size                   = n_samples,
                    shape                        = shape,
                    verbose                      = False,
                    unconditional_guidance_scale = scale,
                    eta                          = ddim_eta,
                    order                        = dpm_order,
                    x_T                          = init_latent,
                    width                        = width,
                    height                       = height,
                    DPMencode                    = True,
                )

                z_ref_enc, _ = sampler.sample(
                    steps                        = dpm_steps,
                    inv_emb                      = inv_emb,
                    unconditional_conditioning   = uc,
                    conditioning                 = c,
                    batch_size                   = n_samples,
                    shape                        = shape,
                    verbose                      = False,
                    unconditional_guidance_scale = scale,
                    eta                          = ddim_eta,
                    order                        = dpm_order,
                    x_T                          = ref_latent,
                    DPMencode                    = True,
                    width                        = width,
                    height                       = height,
                    ref                          = True,
                )

                samples_orig = z_enc.clone()

                # inpainting in XOR region of M_seg and M_mask
                z_enc[:, :, param[0] : param[1], param[2] : param[3]] = z_enc[
                    :, :, param[0] : param[1], param[2] : param[3]
                ] * segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr] + torch.randn(
                    (1, 4, bottom_rr - top_rr, right_rr - left_rr), device=device
                ) * (1 - segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr])

                samples_for_cross = samples_orig.clone()
                samples_ref = z_ref_enc.clone()
                samples = z_enc.clone()

                # noise composition
                if domain == "Cross Domain":
                    samples[:, :, param[0] : param[1], param[2] : param[3]] = torch.randn(
                        (1, 4, bottom_rr - top_rr, right_rr - left_rr), device=device
                    )
                    # apply the segmentation mask on the noise
                    samples[:, :, param[0] : param[1], param[2] : param[3]] = (
                        samples[:, :, param[0] : param[1], param[2] : param[3]].clone()
                        * (1 - segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr])
                        + z_ref_enc[:, :, top_rr:bottom_rr, left_rr:right_rr].clone()
                        * segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr]
                    )

                mask = torch.zeros_like(z_enc, device=device)
                mask[:, :, param[0] : param[1], param[2] : param[3]] = 1

                samples, _ = sampler.sample(
                    steps                        = dpm_steps,
                    inv_emb                      = inv_emb,
                    conditioning                 = c,
                    batch_size                   = n_samples,
                    shape                        = shape,
                    verbose                      = False,
                    unconditional_guidance_scale = scale,
                    unconditional_conditioning   = uc,
                    eta                          = ddim_eta,
                    order                        = dpm_order,
                    x_T                          = [samples_orig, samples.clone(), samples_for_cross, samples_ref, samples, init_latent],
                    width                        = width,
                    height                       = height,
                    segmentation_map             = segmentation_map,
                    param                        = param,
                    mask                         = mask,
                    target_height                = target_height,
                    target_width                 = target_width,
                    center_row_rm                = center_row_from_top,
                    center_col_rm                = center_col_from_left,
                    tau_a                        = tau_a,
                    tau_b                        = tau_b,
                )

                x_samples = model.decode_first_stage(samples)
                x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)

                T2 = time.time()
                print("Running Time: %s s" % (T2 - T1))

                for x_sample in x_samples:
                    x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
                    img = Image.fromarray(x_sample.astype(np.uint8))
                    # img.save(os.path.join(sample_path, f"{base_count:05}_{prompts[0]}.png"))
                    return img


def read_content(file_path: str) -> str:
    """read the content of target file"""
    with open(file_path, "r", encoding="utf-8") as f:
        content = f.read()

    return content


example = {}
ref_dir = "./gradio/foreground"
image_dir = "./gradio/background"
seg_dir = "./gradio/seg_foreground"
image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
image_list.sort()

ref_list = [os.path.join(ref_dir, file) for file in os.listdir(ref_dir)]
ref_list.sort()
seg_list = [os.path.join(seg_dir, file) for file in os.listdir(seg_dir)]
seg_list.sort()
reference_list = [[ref_img, ref_mask] for ref_img, ref_mask in zip(ref_list, seg_list)]

image_list = [
    {
        "image": image,
        "boxes": [
            {
                "xmin" : 128,
                "ymin" : 128,
                "xmax" : 384,
                "ymax" : 384,
                "label": "Mask",
                "color": (250, 0, 0),
            }
        ],
    }
    for image in image_list
]


def update_mask(image):
    print("update mask")
    bbox = image["boxes"][0]
    label = image["boxes"][0]["label"]
    xmin = bbox["xmin"]
    ymin = bbox["ymin"]
    xmax = bbox["xmax"]
    ymax = bbox["ymax"]
    coords = [xmin, ymin, xmax, ymax]
    return (image["image"], [(coords, label)])


if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.HTML(
            """
            <h1 style="text-align: center; font-size: 32px; font-family: 'Times New Roman', Times, serif;">
                🦄TF-ICON: Diffusion-Based Training-Free Cross-Domain Image Composition
            </h1>
            <p style="text-align: center; font-size: 20px; font-family: 'Times New Roman', Times, serif;">
                <a style="text-align: center; display:inline-block"
                    href="https://shilin-lu.github.io/tf-icon.github.io/">
                    <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/paper-page-sm.svg#center"
                    alt="Paper Page">
                </a>
                <a style="text-align: center; display:inline-block" href="https://huggingface.co/spaces/sky24h/TF-ICON-unofficial?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center" alt="Duplicate Space">
                </a>
            </p>
            This is an unofficial demo for the paper 'TF-ICON: Diffusion-Based Training-Free Cross-Domain Image Composition'.
            </p>
            """
        )
        with gr.Row():
            with gr.Column():
                # back_image_invisible = gr.Image(elem_id="image_upload", type="pil", label="Background Image", height=512, visible=False)
                image = image_annotator(
                    None,
                    label_list=["Mask"],
                    label_colors=[(255, 0, 0)],
                    height=512,
                    image_type="pil",
                )
                # back_image_invisible.change(fn=set_image, inputs=[back_image_invisible, image])

                mask_btn = gr.Button("Generate Mask")
                reference = gr.Image(elem_id="image_upload", type="pil", label="Foreground Image", height=512)

                with gr.Row():
                    # guidance = gr.Slider(label="Guidance scale", value=5, maximum=15,interactive=True)
                    steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1, interactive=True)
                    seed = gr.Slider(0, 10000, label="Seed (0 = random)", value=3407, step=1)

                with gr.Row():
                    tau_a = gr.Slider(
                        label="tau_a",
                        value=0.4,
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        interactive=True,
                        info="Foreground Attention Injection",
                    )
                    tau_b = gr.Slider(
                        label="tau_b", value=0.8, minimum=0.0, maximum=1.0, step=0.1, interactive=True, info="Background Preservation"
                    )

                with gr.Row():
                    scale = gr.Slider(
                        label="CFG",
                        value=2.5,
                        minimum=0.0,
                        maximum=15.0,
                        step=0.5,
                        interactive=True,
                        info="CFG=2.5 for real domain CFG>=5.0 for cross domain",
                    )
                    dpm_order = gr.CheckboxGroup(["1", "2", "3"], value="2", label="DPM Solver Order")

                domain = gr.Radio(
                    ["Cross Domain", "Real Domain"],
                    value="Real Domain",
                    label="Domain",
                    info="When background is real image, choose Real Domain; otherwise, choose Cross Domain",
                )
                prompt = gr.Textbox(label="Prompt", info="an oil painting (or a pencil drawing) of a panda")  # .style(height=512)

                btn = gr.Button("Run!")  #

            with gr.Column():
                mask = gr.AnnotatedImage(
                    label="Composition Region",
                    # info="Setting mask for composition region: first click for the top left corner, second click for the bottom right corner",
                    color_map={"Region for Composing Object": "#9987FF", "Click Second Point for Mask": "#f44336"},
                    height=512,
                )

                mask_btn.click(fn=update_mask, inputs=[image], outputs=[mask])
                # image.select(get_select_coordinates, image, mask)

                seg = gr.Image(elem_id="image_upload", type="pil", label="Segmentation Mask for Foreground", height=512)

                image_out = gr.Image(label="Output", elem_id="output-img", height=512)

                # with gr.Group(elem_id="share-btn-container"):
                #     community_icon = gr.HTML(community_icon_html, visible=True)
                #     loading_icon = gr.HTML(loading_icon_html, visible=True)
                #     share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)

        with gr.Row():
            with gr.Column():
                gr.Examples(image_list, inputs=[image], label="Examples - Background Image", examples_per_page=12)
            with gr.Column():
                gr.Examples(reference_list, inputs=[reference, seg], label="Examples - Foreground Image", examples_per_page=12)

        btn.click(fn=tficon, inputs=[image, reference, seg, prompt, dpm_order, steps, tau_a, tau_b, domain, seed, scale], outputs=[image_out])

        demo.queue(max_size=10).launch()