File size: 13,865 Bytes
2b34e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import torch
from torch import nn
from torch.nn import functional as F


class Conv2d(nn.Module):
    def __init__(self, cin, cout, kernel_size, stride, padding, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout))
        self.act = nn.ReLU()

    def forward(self, x):
        out = self.conv_block(x)
        return self.act(out)


class Conv2d_res(nn.Module):
    # TensorRT does not support 'if' statement, thus we create independent Conv2d_res for residual block
    def __init__(self, cin, cout, kernel_size, stride, padding, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout))
        self.act = nn.ReLU()

    def forward(self, x):
        out = self.conv_block(x)
        out += x
        return self.act(out)


class Conv2dTranspose(nn.Module):
    def __init__(self, cin, cout, kernel_size, stride, padding, output_padding=0, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.conv_block = nn.Sequential(
            nn.ConvTranspose2d(cin, cout, kernel_size, stride, padding, output_padding),
            nn.BatchNorm2d(cout),
        )
        self.act = nn.ReLU()

    def forward(self, x):
        out = self.conv_block(x)
        return self.act(out)


class FETE_model(nn.Module):
    def __init__(self):
        super(FETE_model, self).__init__()

        self.face_encoder_blocks = nn.ModuleList(
            [
                nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=2, padding=3)),  # 256,256 -> 128,128
                nn.Sequential(
                    Conv2d(16, 32, kernel_size=3, stride=2, padding=1),  # 64,64
                    Conv2d_res(32, 32, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(32, 32, kernel_size=3, stride=1, padding=1),
                ),
                nn.Sequential(
                    Conv2d(32, 64, kernel_size=3, stride=2, padding=1),  # 32,32
                    Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
                ),
                nn.Sequential(
                    Conv2d(64, 128, kernel_size=3, stride=2, padding=1),  # 16,16
                    Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
                ),
                nn.Sequential(
                    Conv2d(128, 256, kernel_size=3, stride=2, padding=1),  # 8,8
                    Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),
                ),
                nn.Sequential(
                    Conv2d(256, 512, kernel_size=3, stride=2, padding=1),  # 4,4
                    Conv2d_res(512, 512, kernel_size=3, stride=1, padding=1),
                ),
                nn.Sequential(
                    Conv2d(512, 512, kernel_size=3, stride=2, padding=0),  # 1, 1
                    Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
                ),
            ]
        )

        self.audio_encoder = nn.Sequential(
            Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
            Conv2d_res(32, 32, kernel_size=3, stride=1, padding=1),
            Conv2d_res(32, 32, kernel_size=3, stride=1, padding=1),
            Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
            Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
            Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
            Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
            Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
            Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
            Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
            Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),
            Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
        )

        self.pose_encoder = nn.Sequential(
            Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
            Conv2d_res(32, 32, kernel_size=3, stride=1, padding=1),
            Conv2d(32, 64, kernel_size=3, stride=(1, 2), padding=1),
            Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
            Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
            Conv2d(128, 256, kernel_size=3, stride=(1, 2), padding=1),
            Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),
            Conv2d(256, 512, kernel_size=3, stride=2, padding=0),
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
        )

        self.emotion_encoder = nn.Sequential(
            Conv2d(1, 32, kernel_size=7, stride=1, padding=1),
            Conv2d_res(32, 32, kernel_size=3, stride=1, padding=1),
            Conv2d(32, 64, kernel_size=3, stride=(1, 2), padding=1),
            Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
            Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
            Conv2d(128, 256, kernel_size=3, stride=(1, 2), padding=1),
            Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),
            Conv2d(256, 512, kernel_size=3, stride=2, padding=0),
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
        )

        self.blink_encoder = nn.Sequential(
            Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
            Conv2d_res(32, 32, kernel_size=3, stride=1, padding=1),
            Conv2d(32, 64, kernel_size=3, stride=(1, 2), padding=1),
            Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
            Conv2d(64, 128, kernel_size=3, stride=(1, 2), padding=1),
            Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
            Conv2d(128, 256, kernel_size=3, stride=(1, 2), padding=1),
            Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),
            Conv2d(256, 512, kernel_size=1, stride=(1, 2), padding=0),
            Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
        )

        self.face_decoder_blocks = nn.ModuleList(
            [
                nn.Sequential(
                    Conv2d(2048, 512, kernel_size=1, stride=1, padding=0),
                ),
                nn.Sequential(
                    Conv2dTranspose(1024, 512, kernel_size=4, stride=1, padding=0),  # 4,4
                    Conv2d_res(512, 512, kernel_size=3, stride=1, padding=1),
                ),
                nn.Sequential(
                    Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
                    Conv2d_res(512, 512, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(512, 512, kernel_size=3, stride=1, padding=1),  # 8,8
                    Self_Attention(512, 512),
                ),
                nn.Sequential(
                    Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
                    Conv2d_res(384, 384, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(384, 384, kernel_size=3, stride=1, padding=1),  # 16, 16
                    Self_Attention(384, 384),
                ),
                nn.Sequential(
                    Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
                    Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(256, 256, kernel_size=3, stride=1, padding=1),  # 32, 32
                    Self_Attention(256, 256),
                ),
                nn.Sequential(
                    Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
                    Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(128, 128, kernel_size=3, stride=1, padding=1),
                ),  # 64, 64
                nn.Sequential(
                    Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
                    Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
                    Conv2d_res(64, 64, kernel_size=3, stride=1, padding=1),
                ),
            ]
        )  # 128,128

        # self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
        #     nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
        #     nn.Sigmoid())

        self.output_block = nn.Sequential(
            Conv2dTranspose(80, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
            nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
            nn.Sigmoid(),
        )

    def forward(
        self,
        face_sequences,
        audio_sequences,
        pose_sequences,
        emotion_sequences,
        blink_sequences,
    ):
        # audio_sequences = (B, T, 1, 80, 16)
        B = audio_sequences.size(0)

        # disabled for inference
        # input_dim_size = len(face_sequences.size())
        # if input_dim_size > 4:
        #     audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
        #     pose_sequences = torch.cat([pose_sequences[:, i] for i in range(pose_sequences.size(1))], dim=0)
        #     emotion_sequences = torch.cat([emotion_sequences[:, i] for i in range(emotion_sequences.size(1))], dim=0)
        #     blink_sequences = torch.cat([blink_sequences[:, i] for i in range(blink_sequences.size(1))], dim=0)
        #     face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
        # print(audio_sequences.size(), face_sequences.size(), pose_sequences.size(), emotion_sequences.size())

        audio_embedding   = self.audio_encoder(audio_sequences)  # B,                                                     512,  1, 1
        pose_embedding    = self.pose_encoder(pose_sequences)  # B,                                                       512,  1, 1
        emotion_embedding = self.emotion_encoder(emotion_sequences)  # B,                                                 512,  1, 1
        blink_embedding   = self.blink_encoder(blink_sequences)  # B,                                                     512,  1, 1
        inputs_embedding  = torch.cat((audio_embedding, pose_embedding, emotion_embedding, blink_embedding), dim=1)  # B, 1536, 1, 1
        # print(audio_embedding.size(), pose_embedding.size(), emotion_embedding.size(), inputs_embedding.size())

        feats = []
        x = face_sequences
        for f in self.face_encoder_blocks:
            x = f(x)
            # print(x.shape)
            feats.append(x)

        x = inputs_embedding
        for f in self.face_decoder_blocks:
            x = f(x)
            # print(x.shape)

            # try:
            x = torch.cat((x, feats[-1]), dim=1)
            # except Exception as e:
            #     print(x.size())
            #     print(feats[-1].size())
            #     raise e
            feats.pop()

        x = self.output_block(x)

        # if input_dim_size > 4:
        #     x = torch.split(x, B, dim=0) # [(B, C, H, W)]
        #     outputs = torch.stack(x, dim=2) # (B, C, T, H, W)

        # else:
        outputs = x

        return outputs


class Self_Attention(nn.Module):
    """
    Source-Reference Attention Layer
    """

    def __init__(self, in_planes_s, in_planes_r):
        """
        Parameters
        ----------
            in_planes_s: int
                Number of input source feature vector channels.
            in_planes_r: int
                Number of input reference feature vector channels.
        """
        super(Self_Attention, self).__init__()
        self.query_conv = nn.Conv2d(in_channels=in_planes_s, out_channels=in_planes_s // 8, kernel_size=1)
        self.key_conv   = nn.Conv2d(in_channels=in_planes_r, out_channels=in_planes_r // 8, kernel_size=1)
        self.value_conv = nn.Conv2d(in_channels=in_planes_r, out_channels=in_planes_r, kernel_size=1)
        self.gamma      = nn.Parameter(torch.zeros(1))
        self.softmax    = nn.Softmax(dim=-1)

    def forward(self, source):
        source = source.float() if isinstance(source, torch.cuda.HalfTensor) else source
        reference = source
        """
        Parameters
        ----------
            source : torch.Tensor
                Source feature maps (B x Cs x Ts x Hs x Ws)
            reference : torch.Tensor
                Reference feature maps (B x Cr x Tr x Hr x Wr )
         Returns :
            torch.Tensor
                Source-reference attention value added to the input source features
            torch.Tensor
                Attention map (B x Ns x Nt) (Ns=Ts*Hs*Ws, Nr=Tr*Hr*Wr)
        """
        s_batchsize, sC, sH, sW = source.size()
        r_batchsize, rC, rH, rW = reference.size()

        proj_query = self.query_conv(source).view(s_batchsize, -1, sH * sW).permute(0, 2, 1)
        proj_key   = self.key_conv(reference).view(r_batchsize, -1, rW * rH)
        energy     = torch.bmm(proj_query, proj_key)
        attention  = self.softmax(energy)
        proj_value = self.value_conv(reference).view(r_batchsize, -1, rH * rW)
        out        = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out        = out.view(s_batchsize, sC, sH, sW)
        out        = self.gamma * out + source
        return out.half() if isinstance(source, torch.cuda.FloatTensor) else out