Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,774 Bytes
2b34e02 eae1cca 2b34e02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import os
# set CUDA_MODULE_LOADING=LAZY to speed up the serverless function
os.environ["CUDA_MODULE_LOADING"] = "LAZY"
# set SAFETENSORS_FAST_GPU=1 to speed up the serverless function
os.environ["SAFETENSORS_FAST_GPU"] = "1"
import cv2
import torch
import time
import imageio
import numpy as np
from tqdm import tqdm
import moviepy.editor as mp
import torch
from audio import load_wav, melspectrogram
from fete_model import FETE_model
from preprocess_videos import face_detect, load_from_npz
fps = 25
mel_idx_multiplier = 80.0 / fps
mel_step_size = 16
batch_size = 64 if torch.cuda.is_available() else 4
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} for inference.".format(device))
use_fp16 = True if torch.cuda.is_available() else False
print("Using FP16 for inference.") if use_fp16 else None
torch.backends.cudnn.benchmark = True if device == "cuda" else False
def init_model():
checkpoint_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "checkpoints/obama-fp16.safetensors")
model = FETE_model()
if checkpoint_path.endswith(".pth") or checkpoint_path.endswith(".ckpt"):
if device == "cuda":
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
s = checkpoint["state_dict"]
else:
from safetensors import safe_open
s = {}
with safe_open(checkpoint_path, framework="pt", device=device) as f:
for key in f.keys():
s[key] = f.get_tensor(key)
new_s = {}
for k, v in s.items():
new_s[k.replace("module.", "")] = v
model.load_state_dict(new_s)
model = model.to(device)
model.eval()
print("Model loaded")
if use_fp16:
for name, module in model.named_modules():
if ".query_conv" in name or ".key_conv" in name or ".value_conv" in name:
# keep attention layers in full precision to avoid error
module.to(torch.float)
else:
module.to(torch.half)
print("Model converted to half precision to accelerate inference")
return model
def make_mask(image_size=256, border_size=32):
mask_bar = np.linspace(1, 0, border_size).reshape(1, -1).repeat(image_size, axis=0)
mask = np.zeros((image_size, image_size), dtype=np.float32)
mask[-border_size:, :] += mask_bar.T[::-1]
mask[:, :border_size] = mask_bar
mask[:, -border_size:] = mask_bar[:, ::-1]
mask[-border_size:, :][mask[-border_size:, :] < 0.6] = 0.6
mask = np.stack([mask] * 3, axis=-1).astype(np.float32)
return mask
face_mask = make_mask()
def blend_images(foreground, background):
# Blend the foreground and background images using the mask
temp_mask = cv2.resize(face_mask, (foreground.shape[1], foreground.shape[0]))
blended = cv2.multiply(foreground.astype(np.float32), temp_mask)
blended += cv2.multiply(background.astype(np.float32), 1 - temp_mask)
blended = np.clip(blended, 0, 255).astype(np.uint8)
return blended
def smooth_coord(last_coord, current_coord, factor=0.4):
change = np.array(current_coord) - np.array(last_coord)
change = change * factor
return (np.array(last_coord) + np.array(change)).astype(int).tolist()
def add_black(imgs):
for i in range(len(imgs)):
# print('x', imgs[i].shape)
imgs[i] = cv2.vconcat(
[np.zeros((100, imgs[i].shape[1], 3), dtype=np.uint8), imgs[i], np.zeros((20, imgs[i].shape[1], 3), dtype=np.uint8)]
)
# imgs[i] = cv2.hconcat([np.zeros((imgs[i].shape[0], 100, 3), dtype=np.uint8), imgs[i], np.zeros((imgs[i].shape[0], 100, 3), dtype=np.uint8)])[:480+150,740-100:-740+100,:]
# print('xx', imgs[i].shape)
return imgs
def remove_black(img):
return img[100:-20]
def resize_length(input_attributes, length):
input_attributes = np.array(input_attributes)
resized_attributes = [input_attributes[int(i_ * (input_attributes.shape[0] / length))] for i_ in range(length)]
return np.array(resized_attributes).T
def output_chunks(input_attributes):
output_chunks = []
len_ = len(input_attributes[0])
i = 0
# print(mel.shape, pose.shape)
# (80, 801) (3, 801)
while 1:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len_:
output_chunks.append(input_attributes[:, len_ - mel_step_size :])
break
output_chunks.append(input_attributes[:, start_idx : start_idx + mel_step_size])
i += 1
return output_chunks
def prepare_data(face_path, audio_path, pose, emotion, blink, img_size=256, pads=[0, 0, 0, 0]):
if os.path.isfile(face_path) and face_path.split(".")[1] in ["jpg", "png", "jpeg"]:
static = True
full_frames = [cv2.imread(face_path)]
else:
static = False
video_stream = cv2.VideoCapture(face_path)
# print('Reading video frames...')
full_frames = []
while 1:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
full_frames.append(frame)
print("Number of frames available for inference: " + str(len(full_frames)))
wav = load_wav(audio_path, 16000)
mel = melspectrogram(wav)
# take half
len_ = mel.shape[1] # //2
mel = mel[:, :len_]
# print('>>>', mel.shape)
pose = resize_length(pose, len_)
emotion = resize_length(emotion, len_)
blink = resize_length(blink, len_)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError("Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again")
mel_chunks = output_chunks(mel)
pose_chunks = output_chunks(pose)
emotion_chunks = output_chunks(emotion)
blink_chunks = output_chunks(blink)
gen = datagen(face_path, full_frames, mel_chunks, pose_chunks, emotion_chunks, blink_chunks, static=static, img_size=img_size, pads=pads)
steps = int(np.ceil(float(len(mel_chunks)) / batch_size))
return gen, steps
def preprocess_batch(batch):
return torch.FloatTensor(np.reshape(batch, [len(batch), 1, batch[0].shape[0], batch[0].shape[1]])).to(device)
def datagen(face_path, frames, mels, poses, emotions, blinks, static=False, img_size=256, pads=[0, 0, 0, 0]):
img_batch, mel_batch, pose_batch, emotion_batch, blink_batch, frame_batch, coords_batch = [], [], [], [], [], [], []
scale_factor = img_size // 128
# print("Length of mel chunks: {}".format(len(mel_chunks)))
frames = frames[: len(mels)]
frames = add_black(frames)
try:
video_name = os.path.basename(face_path).split(".")[0]
coords = load_from_npz(video_name)
face_det_results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(frames, coords)]
except Exception as e:
print("No existing coords found, running face detection...", "Error: ", e)
if not static:
coords = face_detect(frames, pads)
face_det_results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(frames, coords)]
else:
coords = face_detect([frames[0]], pads)
face_det_results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(frames, coords)]
face_det_results = face_det_results[: len(mels)]
while len(frames) < len(mels):
face_det_results = face_det_results + face_det_results[::-1]
frames = frames + frames[::-1]
else:
face_det_results = face_det_results[: len(mels)]
frames = frames[: len(mels)]
for i in range(len(mels)):
idx = 0 if static else i % len(frames)
frame_to_save = frames[idx].copy()
face, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
img_batch.append(face)
mel_batch.append(mels[i])
pose_batch.append(poses[i])
emotion_batch.append(emotions[i])
blink_batch.append(blinks[i])
frame_batch.append(frame_to_save)
coords_batch.append(coords)
# print(m.shape, poses[i].shape)
# (80, 16) (3, 16)
if len(img_batch) >= batch_size:
img_masked = np.asarray(img_batch).copy()
img_masked[:, 16 * scale_factor : -16 * scale_factor, 16 * scale_factor : -16 * scale_factor] = 0.0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = preprocess_batch(mel_batch)
pose_batch = preprocess_batch(pose_batch)
emotion_batch = preprocess_batch(emotion_batch)
blink_batch = preprocess_batch(blink_batch)
if use_fp16:
yield (
img_batch.half(),
mel_batch.half(),
pose_batch.half(),
emotion_batch.half(),
blink_batch.half(),
), frame_batch, coords_batch
else:
yield (img_batch, mel_batch, pose_batch, emotion_batch, blink_batch), frame_batch, coords_batch
img_batch, mel_batch, pose_batch, emotion_batch, blink_batch, frame_batch, coords_batch = [], [], [], [], [], [], []
if len(img_batch) > 0:
img_masked = np.asarray(img_batch).copy()
img_masked[:, 16 * scale_factor : -16 * scale_factor, 16 * scale_factor : -16 * scale_factor] = 0.0
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = preprocess_batch(mel_batch)
pose_batch = preprocess_batch(pose_batch)
emotion_batch = preprocess_batch(emotion_batch)
blink_batch = preprocess_batch(blink_batch)
if use_fp16:
yield (img_batch.half(), mel_batch.half(), pose_batch.half(), emotion_batch.half(), blink_batch.half()), frame_batch, coords_batch
else:
yield (img_batch, mel_batch, pose_batch, emotion_batch, blink_batch), frame_batch, coords_batch
def infenrece(model, face_path, audio_path, pose, emotion, blink, preview=False):
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime(time.time()))
gen, steps = prepare_data(face_path, audio_path, pose, emotion, blink)
steps = 1 if preview else steps
# duration = librosa.get_duration(filename=audio_path)
if preview:
outfile = "/tmp/{}.jpg".format(timestamp)
else:
outfile = "/tmp/{}.mp4".format(timestamp)
tmp_video = "/tmp/temp_{}.mp4".format(timestamp)
writer = (
imageio.get_writer(tmp_video, fps=fps, codec="libx264", quality=10, pixelformat="yuv420p", macro_block_size=1)
if not preview
else None
)
# print('Generating frames...', outfile, steps)
for inputs, frames, coords in tqdm(gen, total=steps):
with torch.no_grad():
pred = model(*inputs)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
y1, y2, x1, x2 = int(y1), int(y2), int(x1), int(x2)
y = round(y2 - y1)
x = round(x2 - x1)
p = cv2.resize(p.astype(np.uint8), (x, y))
try:
f[y1 : y1 + y, x1 : x1 + x] = blend_images(f[y1 : y1 + y, x1 : x1 + x], p)
except Exception as e:
print(e)
f[y1 : y1 + y, x1 : x1 + x] = p
f = remove_black(f)
if preview:
cv2.imwrite(outfile, f, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
return outfile
writer.append_data(cv2.cvtColor(f, cv2.COLOR_BGR2RGB))
writer.close()
video_clip = mp.VideoFileClip(tmp_video)
audio_clip = mp.AudioFileClip(audio_path)
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(outfile, codec="libx264")
print("Saved to {}".format(outfile) if os.path.exists(outfile) else "Failed to save {}".format(outfile))
try:
os.remove(tmp_video)
del video_clip
del audio_clip
del gen
except:
pass
return outfile
if __name__ == "__main__":
model = init_model()
from attributtes_utils import input_pose, input_emotion, input_blink
pose = input_pose()
emotion = input_emotion()
blink = input_blink()
audio_path = "./assets/sample.wav"
face_path = "./assets/sample.mp4"
infenrece(model, face_path, audio_path, pose, emotion, blink)
|