File size: 12,774 Bytes
2b34e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae1cca
 
 
 
 
2b34e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os

# set CUDA_MODULE_LOADING=LAZY to speed up the serverless function
os.environ["CUDA_MODULE_LOADING"] = "LAZY"
# set SAFETENSORS_FAST_GPU=1 to speed up the serverless function
os.environ["SAFETENSORS_FAST_GPU"] = "1"
import cv2
import torch
import time
import imageio
import numpy as np
from tqdm import tqdm
import moviepy.editor as mp
import torch

from audio import load_wav, melspectrogram
from fete_model import FETE_model
from preprocess_videos import face_detect, load_from_npz

fps = 25
mel_idx_multiplier = 80.0 / fps

mel_step_size = 16
batch_size = 64 if torch.cuda.is_available() else 4
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} for inference.".format(device))
use_fp16 = True if torch.cuda.is_available() else False
print("Using FP16 for inference.") if use_fp16 else None
torch.backends.cudnn.benchmark = True if device == "cuda" else False


def init_model():
    checkpoint_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "checkpoints/obama-fp16.safetensors")
    model = FETE_model()
    if checkpoint_path.endswith(".pth") or checkpoint_path.endswith(".ckpt"):
        if device == "cuda":
            checkpoint = torch.load(checkpoint_path)
        else:
            checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
        s = checkpoint["state_dict"]
    else:
        from safetensors import safe_open

        s = {}
        with safe_open(checkpoint_path, framework="pt", device=device) as f:
            for key in f.keys():
                s[key] = f.get_tensor(key)
    new_s = {}
    for k, v in s.items():
        new_s[k.replace("module.", "")] = v
    model.load_state_dict(new_s)

    model = model.to(device)
    model.eval()
    print("Model loaded")
    if use_fp16:
        for name, module in model.named_modules():
            if ".query_conv" in name or ".key_conv" in name or ".value_conv" in name:
                # keep attention layers in full precision to avoid error
                module.to(torch.float)
            else:
                module.to(torch.half)
        print("Model converted to half precision to accelerate inference")
    return model


def make_mask(image_size=256, border_size=32):
    mask_bar = np.linspace(1, 0, border_size).reshape(1, -1).repeat(image_size, axis=0)
    mask = np.zeros((image_size, image_size), dtype=np.float32)
    mask[-border_size:, :] += mask_bar.T[::-1]
    mask[:, :border_size] = mask_bar
    mask[:, -border_size:] = mask_bar[:, ::-1]
    mask[-border_size:, :][mask[-border_size:, :] < 0.6] = 0.6
    mask = np.stack([mask] * 3, axis=-1).astype(np.float32)
    return mask


face_mask = make_mask()


def blend_images(foreground, background):
    # Blend the foreground and background images using the mask
    temp_mask = cv2.resize(face_mask, (foreground.shape[1], foreground.shape[0]))
    blended = cv2.multiply(foreground.astype(np.float32), temp_mask)
    blended += cv2.multiply(background.astype(np.float32), 1 - temp_mask)
    blended = np.clip(blended, 0, 255).astype(np.uint8)
    return blended


def smooth_coord(last_coord, current_coord, factor=0.4):
    change = np.array(current_coord) - np.array(last_coord)
    change = change * factor
    return (np.array(last_coord) + np.array(change)).astype(int).tolist()


def add_black(imgs):
    for i in range(len(imgs)):
        # print('x', imgs[i].shape)
        imgs[i] = cv2.vconcat(
            [np.zeros((100, imgs[i].shape[1], 3), dtype=np.uint8), imgs[i], np.zeros((20, imgs[i].shape[1], 3), dtype=np.uint8)]
        )
        # imgs[i] = cv2.hconcat([np.zeros((imgs[i].shape[0], 100, 3), dtype=np.uint8), imgs[i], np.zeros((imgs[i].shape[0], 100, 3), dtype=np.uint8)])[:480+150,740-100:-740+100,:]

        # print('xx', imgs[i].shape)
    return imgs


def remove_black(img):
    return img[100:-20]


def resize_length(input_attributes, length):
    input_attributes = np.array(input_attributes)
    resized_attributes = [input_attributes[int(i_ * (input_attributes.shape[0] / length))] for i_ in range(length)]
    return np.array(resized_attributes).T


def output_chunks(input_attributes):
    output_chunks = []
    len_ = len(input_attributes[0])

    i = 0
    # print(mel.shape, pose.shape)
    # (80, 801) (3, 801)
    while 1:
        start_idx = int(i * mel_idx_multiplier)
        if start_idx + mel_step_size > len_:
            output_chunks.append(input_attributes[:, len_ - mel_step_size :])
            break
        output_chunks.append(input_attributes[:, start_idx : start_idx + mel_step_size])
        i += 1
    return output_chunks


def prepare_data(face_path, audio_path, pose, emotion, blink, img_size=256, pads=[0, 0, 0, 0]):
    if os.path.isfile(face_path) and face_path.split(".")[1] in ["jpg", "png", "jpeg"]:
        static = True
        full_frames = [cv2.imread(face_path)]
    else:
        static = False
        video_stream = cv2.VideoCapture(face_path)

        # print('Reading video frames...')
        full_frames = []
        while 1:
            still_reading, frame = video_stream.read()
            if not still_reading:
                video_stream.release()
                break
            full_frames.append(frame)
    print("Number of frames available for inference: " + str(len(full_frames)))

    wav = load_wav(audio_path, 16000)
    mel = melspectrogram(wav)
    # take half
    len_ = mel.shape[1]  #  //2
    mel = mel[:, :len_]
    # print('>>>', mel.shape)

    pose = resize_length(pose, len_)
    emotion = resize_length(emotion, len_)
    blink = resize_length(blink, len_)

    if np.isnan(mel.reshape(-1)).sum() > 0:
        raise ValueError("Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again")

    mel_chunks = output_chunks(mel)
    pose_chunks = output_chunks(pose)
    emotion_chunks = output_chunks(emotion)
    blink_chunks = output_chunks(blink)

    gen = datagen(face_path, full_frames, mel_chunks, pose_chunks, emotion_chunks, blink_chunks, static=static, img_size=img_size, pads=pads)
    steps = int(np.ceil(float(len(mel_chunks)) / batch_size))

    return gen, steps


def preprocess_batch(batch):
    return torch.FloatTensor(np.reshape(batch, [len(batch), 1, batch[0].shape[0], batch[0].shape[1]])).to(device)


def datagen(face_path, frames, mels, poses, emotions, blinks, static=False, img_size=256, pads=[0, 0, 0, 0]):
    img_batch, mel_batch, pose_batch, emotion_batch, blink_batch, frame_batch, coords_batch = [], [], [], [], [], [], []
    scale_factor = img_size // 128

    # print("Length of mel chunks: {}".format(len(mel_chunks)))
    frames = frames[: len(mels)]
    frames = add_black(frames)
    try:
        video_name = os.path.basename(face_path).split(".")[0]
        coords = load_from_npz(video_name)
        face_det_results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(frames, coords)]

    except Exception as e:
        print("No existing coords found, running face detection...", "Error: ", e)
        if not static:
            coords = face_detect(frames, pads)
            face_det_results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(frames, coords)]
        else:
            coords = face_detect([frames[0]], pads)
            face_det_results = [[image[y1:y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(frames, coords)]

    face_det_results = face_det_results[: len(mels)]

    while len(frames) < len(mels):
        face_det_results = face_det_results + face_det_results[::-1]
        frames = frames + frames[::-1]
    else:
        face_det_results = face_det_results[: len(mels)]
        frames = frames[: len(mels)]

    for i in range(len(mels)):
        idx = 0 if static else i % len(frames)
        frame_to_save = frames[idx].copy()
        face, coords = face_det_results[idx].copy()
        face = cv2.resize(face, (img_size, img_size))

        img_batch.append(face)
        mel_batch.append(mels[i])
        pose_batch.append(poses[i])
        emotion_batch.append(emotions[i])
        blink_batch.append(blinks[i])
        frame_batch.append(frame_to_save)
        coords_batch.append(coords)

        # print(m.shape, poses[i].shape)
        # (80, 16) (3, 16)
        if len(img_batch) >= batch_size:
            img_masked = np.asarray(img_batch).copy()

            img_masked[:, 16 * scale_factor : -16 * scale_factor, 16 * scale_factor : -16 * scale_factor] = 0.0

            img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
            img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)

            mel_batch = preprocess_batch(mel_batch)
            pose_batch = preprocess_batch(pose_batch)
            emotion_batch = preprocess_batch(emotion_batch)
            blink_batch = preprocess_batch(blink_batch)

            if use_fp16:
                yield (
                    img_batch.half(),
                    mel_batch.half(),
                    pose_batch.half(),
                    emotion_batch.half(),
                    blink_batch.half(),
                ), frame_batch, coords_batch
            else:
                yield (img_batch, mel_batch, pose_batch, emotion_batch, blink_batch), frame_batch, coords_batch
            img_batch, mel_batch, pose_batch, emotion_batch, blink_batch, frame_batch, coords_batch = [], [], [], [], [], [], []

    if len(img_batch) > 0:
        img_masked = np.asarray(img_batch).copy()

        img_masked[:, 16 * scale_factor : -16 * scale_factor, 16 * scale_factor : -16 * scale_factor] = 0.0

        img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
        img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)

        mel_batch = preprocess_batch(mel_batch)
        pose_batch = preprocess_batch(pose_batch)
        emotion_batch = preprocess_batch(emotion_batch)
        blink_batch = preprocess_batch(blink_batch)

        if use_fp16:
            yield (img_batch.half(), mel_batch.half(), pose_batch.half(), emotion_batch.half(), blink_batch.half()), frame_batch, coords_batch
        else:
            yield (img_batch, mel_batch, pose_batch, emotion_batch, blink_batch), frame_batch, coords_batch


def infenrece(model, face_path, audio_path, pose, emotion, blink, preview=False):
    timestamp = time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime(time.time()))
    gen, steps = prepare_data(face_path, audio_path, pose, emotion, blink)
    steps = 1 if preview else steps
    # duration = librosa.get_duration(filename=audio_path)

    if preview:
        outfile = "/tmp/{}.jpg".format(timestamp)
    else:
        outfile = "/tmp/{}.mp4".format(timestamp)
        tmp_video = "/tmp/temp_{}.mp4".format(timestamp)
        writer = (
            imageio.get_writer(tmp_video, fps=fps, codec="libx264", quality=10, pixelformat="yuv420p", macro_block_size=1)
            if not preview
            else None
        )
    # print('Generating frames...', outfile, steps)
    for inputs, frames, coords in tqdm(gen, total=steps):
        with torch.no_grad():
            pred = model(*inputs)

        pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0

        for p, f, c in zip(pred, frames, coords):
            y1, y2, x1, x2 = c
            y1, y2, x1, x2 = int(y1), int(y2), int(x1), int(x2)
            y = round(y2 - y1)
            x = round(x2 - x1)
            p = cv2.resize(p.astype(np.uint8), (x, y))

            try:
                f[y1 : y1 + y, x1 : x1 + x] = blend_images(f[y1 : y1 + y, x1 : x1 + x], p)
            except Exception as e:
                print(e)
                f[y1 : y1 + y, x1 : x1 + x] = p
            f = remove_black(f)
            if preview:
                cv2.imwrite(outfile, f, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
                return outfile
            writer.append_data(cv2.cvtColor(f, cv2.COLOR_BGR2RGB))
    writer.close()
    video_clip = mp.VideoFileClip(tmp_video)
    audio_clip = mp.AudioFileClip(audio_path)
    video_clip = video_clip.set_audio(audio_clip)
    video_clip.write_videofile(outfile, codec="libx264")

    print("Saved to {}".format(outfile) if os.path.exists(outfile) else "Failed to save {}".format(outfile))
    try:
        os.remove(tmp_video)
        del video_clip
        del audio_clip
        del gen
    except:
        pass
    return outfile


if __name__ == "__main__":
    model = init_model()

    from attributtes_utils import input_pose, input_emotion, input_blink

    pose = input_pose()
    emotion = input_emotion()
    blink = input_blink()
    audio_path = "./assets/sample.wav"
    face_path = "./assets/sample.mp4"

    infenrece(model, face_path, audio_path, pose, emotion, blink)