Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,239 Bytes
2b34e02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import librosa
import librosa.filters
import numpy as np
# import tensorflow as tf
from scipy import signal
from scipy.io import wavfile
hp_num_mels = 80
hp_rescale = True
hp_rescaling_max = 0.9
hp_use_lws = False
hp_n_fft = 800
hp_hop_size = 200
hp_win_size = 800
hp_sample_rate = 16000
hp_frame_shift_ms = None
hp_signal_normalization = True
hp_allow_clipping_in_normalization = True
hp_symmetric_mels = True
hp_max_abs_value = 4.0
hp_preemphasize = True
hp_preemphasis = 0.97
hp_min_level_db = -100
hp_ref_level_db = 20
hp_fmin = 55
hp_fmax = 7600
def load_wav(path, sr):
return librosa.core.load(path, sr=sr)[0]
def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
# proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))
def save_wavenet_wav(wav, path, sr):
librosa.output.write_wav(path, wav, sr=sr)
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
def get_hop_size():
hop_size = hp_hop_size
if hop_size is None:
assert hp_frame_shift_ms is not None
hop_size = int(hp_frame_shift_ms / 1000 * hp_sample_rate)
return hop_size
def linearspectrogram(wav):
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize))
S = _amp_to_db(np.abs(D)) - hp_ref_level_db
if hp_signal_normalization:
return _normalize(S)
return S
def melspectrogram(wav):
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp_ref_level_db
if hp_signal_normalization:
return _normalize(S)
return S
def _lws_processor():
import lws
return lws.lws(hp_n_fft, get_hop_size(), fftsize=hp_win_size, mode="speech")
def _stft(y):
if hp_use_lws:
return _lws_processor(hp).stft(y).T
else:
return librosa.stft(y=y, n_fft=hp_n_fft, hop_length=get_hop_size(), win_length=hp_win_size)
##########################################################
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram"""
pad = fsize - fshift
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
M = (length + pad * 2 - fsize) // fshift + 2
return M
def pad_lr(x, fsize, fshift):
"""Compute left and right padding"""
M = num_frames(len(x), fsize, fshift)
pad = fsize - fshift
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
# Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
# Conversions
_mel_basis = None
def _linear_to_mel(spectogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectogram)
def _build_mel_basis():
assert hp_fmax <= hp_sample_rate // 2
return librosa.filters.mel(hp_sample_rate, hp_n_fft, n_mels=hp_num_mels, fmin=hp_fmin, fmax=hp_fmax)
def _amp_to_db(x):
min_level = np.exp(hp_min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _normalize(S):
if hp_allow_clipping_in_normalization:
if hp_symmetric_mels:
return np.clip(
(2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value,
-hp_max_abs_value,
hp_max_abs_value,
)
else:
return np.clip(
hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db)),
0,
hp_max_abs_value,
)
assert S.max() <= 0 and S.min() - hp_min_level_db >= 0
if hp_symmetric_mels:
return (2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value
else:
return hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db))
|