File size: 4,239 Bytes
2b34e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import librosa
import librosa.filters
import numpy as np

# import tensorflow as tf
from scipy import signal
from scipy.io import wavfile

hp_num_mels = 80
hp_rescale = True
hp_rescaling_max = 0.9
hp_use_lws = False
hp_n_fft = 800
hp_hop_size = 200
hp_win_size = 800
hp_sample_rate = 16000
hp_frame_shift_ms = None
hp_signal_normalization = True
hp_allow_clipping_in_normalization = True
hp_symmetric_mels = True
hp_max_abs_value = 4.0
hp_preemphasize = True
hp_preemphasis = 0.97
hp_min_level_db = -100
hp_ref_level_db = 20
hp_fmin = 55
hp_fmax = 7600


def load_wav(path, sr):
    return librosa.core.load(path, sr=sr)[0]


def save_wav(wav, path, sr):
    wav *= 32767 / max(0.01, np.max(np.abs(wav)))
    # proposed by @dsmiller
    wavfile.write(path, sr, wav.astype(np.int16))


def save_wavenet_wav(wav, path, sr):
    librosa.output.write_wav(path, wav, sr=sr)


def preemphasis(wav, k, preemphasize=True):
    if preemphasize:
        return signal.lfilter([1, -k], [1], wav)
    return wav


def inv_preemphasis(wav, k, inv_preemphasize=True):
    if inv_preemphasize:
        return signal.lfilter([1], [1, -k], wav)
    return wav


def get_hop_size():
    hop_size = hp_hop_size
    if hop_size is None:
        assert hp_frame_shift_ms is not None
        hop_size = int(hp_frame_shift_ms / 1000 * hp_sample_rate)
    return hop_size


def linearspectrogram(wav):
    D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize))
    S = _amp_to_db(np.abs(D)) - hp_ref_level_db
    if hp_signal_normalization:
        return _normalize(S)
    return S


def melspectrogram(wav):
    D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize))
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp_ref_level_db
    if hp_signal_normalization:
        return _normalize(S)
    return S


def _lws_processor():
    import lws

    return lws.lws(hp_n_fft, get_hop_size(), fftsize=hp_win_size, mode="speech")


def _stft(y):
    if hp_use_lws:
        return _lws_processor(hp).stft(y).T
    else:
        return librosa.stft(y=y, n_fft=hp_n_fft, hop_length=get_hop_size(), win_length=hp_win_size)


##########################################################
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
    """Compute number of time frames of spectrogram"""
    pad = fsize - fshift
    if length % fshift == 0:
        M = (length + pad * 2 - fsize) // fshift + 1
    else:
        M = (length + pad * 2 - fsize) // fshift + 2
    return M


def pad_lr(x, fsize, fshift):
    """Compute left and right padding"""
    M = num_frames(len(x), fsize, fshift)
    pad = fsize - fshift
    T = len(x) + 2 * pad
    r = (M - 1) * fshift + fsize - T
    return pad, pad + r


##########################################################
# Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
    return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]


# Conversions
_mel_basis = None


def _linear_to_mel(spectogram):
    global _mel_basis
    if _mel_basis is None:
        _mel_basis = _build_mel_basis()
    return np.dot(_mel_basis, spectogram)


def _build_mel_basis():
    assert hp_fmax <= hp_sample_rate // 2
    return librosa.filters.mel(hp_sample_rate, hp_n_fft, n_mels=hp_num_mels, fmin=hp_fmin, fmax=hp_fmax)


def _amp_to_db(x):
    min_level = np.exp(hp_min_level_db / 20 * np.log(10))
    return 20 * np.log10(np.maximum(min_level, x))


def _normalize(S):
    if hp_allow_clipping_in_normalization:
        if hp_symmetric_mels:
            return np.clip(
                (2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value,
                -hp_max_abs_value,
                hp_max_abs_value,
            )
        else:
            return np.clip(
                hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db)),
                0,
                hp_max_abs_value,
            )

    assert S.max() <= 0 and S.min() - hp_min_level_db >= 0
    if hp_symmetric_mels:
        return (2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value
    else:
        return hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db))