File size: 9,525 Bytes
c061318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python3
"""

Mock Data Service

Provides sample customer data for testing when external backend is not available

"""

import json
import random
from datetime import datetime, timedelta
from typing import List, Dict, Any

class MockDataService:
    def __init__(self):
        self.sample_properties = [
            {
                "propertyId": 1,
                "propertyName": "Luxury Villa in Palm Jumeirah",
                "propertyTypeName": "Villa",
                "price": 15000000,
                "viewCount": 15,
                "totalDuration": 4500,
                "lastViewedAt": "2024-01-15T10:30:00Z",
                "location": "Palm Jumeirah",
                "bedrooms": 5,
                "bathrooms": 6,
                "area": 8500,
                "features": ["Private Pool", "Garden", "Gym", "Security"]
            },
            {
                "propertyId": 2,
                "propertyName": "Modern Apartment in Downtown",
                "propertyTypeName": "Apartment",
                "price": 3500000,
                "viewCount": 8,
                "totalDuration": 2800,
                "lastViewedAt": "2024-01-14T14:20:00Z",
                "location": "Downtown Dubai",
                "bedrooms": 2,
                "bathrooms": 2,
                "area": 1200,
                "features": ["Balcony", "Gym", "Pool", "Parking"]
            },
            {
                "propertyId": 3,
                "propertyName": "Beachfront Penthouse",
                "propertyTypeName": "Penthouse",
                "price": 25000000,
                "viewCount": 12,
                "totalDuration": 5200,
                "lastViewedAt": "2024-01-13T16:45:00Z",
                "location": "JBR",
                "bedrooms": 4,
                "bathrooms": 5,
                "area": 3200,
                "features": ["Beach Access", "Private Terrace", "Concierge", "Spa"]
            },
            {
                "propertyId": 4,
                "propertyName": "Family Villa in Emirates Hills",
                "propertyTypeName": "Villa",
                "price": 18000000,
                "viewCount": 6,
                "totalDuration": 3800,
                "lastViewedAt": "2024-01-12T11:15:00Z",
                "location": "Emirates Hills",
                "bedrooms": 6,
                "bathrooms": 7,
                "area": 9500,
                "features": ["Garden", "Pool", "Gym", "Staff Quarters"]
            },
            {
                "propertyId": 5,
                "propertyName": "Investment Apartment",
                "propertyTypeName": "Apartment",
                "price": 2200000,
                "viewCount": 4,
                "totalDuration": 1500,
                "lastViewedAt": "2024-01-11T09:30:00Z",
                "location": "Dubai Marina",
                "bedrooms": 1,
                "bathrooms": 1,
                "area": 800,
                "features": ["Marina View", "Gym", "Pool", "Rental Ready"]
            },
            {
                "propertyId": 6,
                "propertyName": "Luxury Townhouse",
                "propertyTypeName": "Townhouse",
                "price": 8500000,
                "viewCount": 10,
                "totalDuration": 4200,
                "lastViewedAt": "2024-01-10T13:20:00Z",
                "location": "Arabian Ranches",
                "bedrooms": 4,
                "bathrooms": 4,
                "area": 2800,
                "features": ["Garden", "Pool", "Golf Course", "Community"]
            },
            {
                "propertyId": 7,
                "propertyName": "Premium Office Space",
                "propertyTypeName": "Office",
                "price": 12000000,
                "viewCount": 3,
                "totalDuration": 1800,
                "lastViewedAt": "2024-01-09T15:45:00Z",
                "location": "DIFC",
                "bedrooms": 0,
                "bathrooms": 2,
                "area": 5000,
                "features": ["Premium Location", "Security", "Parking", "Meeting Rooms"]
            },
            {
                "propertyId": 8,
                "propertyName": "Retail Space in Mall",
                "propertyTypeName": "Retail",
                "price": 8000000,
                "viewCount": 2,
                "totalDuration": 1200,
                "lastViewedAt": "2024-01-08T12:00:00Z",
                "location": "Dubai Mall",
                "bedrooms": 0,
                "bathrooms": 1,
                "area": 3000,
                "features": ["High Foot Traffic", "Premium Location", "Storage", "Security"]
            }
        ]
    
    def get_customer_data(self, customer_id: int) -> List[Dict[str, Any]]:
        """Get mock customer data based on customer ID"""
        
        # Generate different data based on customer ID
        if customer_id == 105:
            # High-value customer with luxury preferences
            return self.sample_properties[:4]  # First 4 properties (luxury)
        elif customer_id == 106:
            # Mid-range customer
            return self.sample_properties[1:5]  # Properties 2-5
        elif customer_id == 107:
            # Investment-focused customer
            return [self.sample_properties[4], self.sample_properties[6], self.sample_properties[7]]
        elif customer_id == 108:
            # Budget-conscious customer
            return [self.sample_properties[1], self.sample_properties[4]]
        else:
            # Random selection for other customer IDs
            num_properties = random.randint(2, 6)
            return random.sample(self.sample_properties, num_properties)
    
    def get_customer_profile(self, customer_id: int) -> Dict[str, Any]:
        """Get customer profile information"""
        profiles = {
            105: {
                "customerName": "Ahmed Al Mansouri",
                "email": "ahmed.mansouri@email.com",
                "phone": "+971501234567",
                "preferredLocation": "Palm Jumeirah",
                "budgetRange": "15M-25M",
                "propertyType": "Villa",
                "leadSource": "Website",
                "lastContact": "2024-01-15T10:30:00Z"
            },
            106: {
                "customerName": "Sarah Johnson",
                "email": "sarah.johnson@email.com",
                "phone": "+971502345678",
                "preferredLocation": "Downtown Dubai",
                "budgetRange": "3M-8M",
                "propertyType": "Apartment",
                "leadSource": "Referral",
                "lastContact": "2024-01-14T14:20:00Z"
            },
            107: {
                "customerName": "Mohammed Rahman",
                "email": "m.rahman@email.com",
                "phone": "+971503456789",
                "preferredLocation": "Dubai Marina",
                "budgetRange": "2M-15M",
                "propertyType": "Mixed",
                "leadSource": "Investment Portal",
                "lastContact": "2024-01-13T16:45:00Z"
            },
            108: {
                "customerName": "Fatima Hassan",
                "email": "fatima.hassan@email.com",
                "phone": "+971504567890",
                "preferredLocation": "Dubai Marina",
                "budgetRange": "2M-4M",
                "propertyType": "Apartment",
                "leadSource": "Social Media",
                "lastContact": "2024-01-12T11:15:00Z"
            }
        }
        
        return profiles.get(customer_id, {
            "customerName": f"Customer {customer_id}",
            "email": f"customer{customer_id}@email.com",
            "phone": f"+97150{random.randint(1000000, 9999999)}",
            "preferredLocation": random.choice(["Dubai Marina", "Downtown Dubai", "Palm Jumeirah", "JBR"]),
            "budgetRange": random.choice(["2M-5M", "5M-10M", "10M-20M", "20M+"]),
            "propertyType": random.choice(["Apartment", "Villa", "Townhouse", "Mixed"]),
            "leadSource": random.choice(["Website", "Referral", "Social Media", "Advertisement"]),
            "lastContact": datetime.now().isoformat()
        })
    
    def generate_engagement_metrics(self, customer_id: int) -> Dict[str, Any]:
        """Generate engagement metrics for the customer"""
        base_engagement = random.randint(30, 90)
        
        # Adjust based on customer ID
        if customer_id == 105:
            base_engagement = 85  # High engagement
        elif customer_id == 106:
            base_engagement = 65  # Medium engagement
        elif customer_id == 107:
            base_engagement = 45  # Lower engagement
        elif customer_id == 108:
            base_engagement = 55  # Medium-low engagement
        
        return {
            "totalViews": random.randint(5, 25),
            "totalDuration": random.randint(1800, 7200),  # 30 minutes to 2 hours
            "engagementScore": base_engagement,
            "lastActivity": datetime.now().isoformat(),
            "favoriteProperties": random.randint(1, 4),
            "searchQueries": random.randint(3, 12),
            "emailOpens": random.randint(1, 8),
            "websiteVisits": random.randint(2, 15)
        }

# Global instance
mock_data_service = MockDataService()