File size: 9,530 Bytes
d79693f 2efc1aa d79693f 3a4d722 d79693f 3a4d722 d79693f 3a4d722 d79693f 2efc1aa d79693f 3a4d722 d79693f 3a4d722 d79693f 2efc1aa d79693f 3a4d722 d79693f 3a4d722 d79693f 2efc1aa d79693f 3a4d722 d79693f 3a4d722 d79693f 3a4d722 d79693f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import math
import json
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import RandomizedSearchCV
from sklearn.naive_bayes import ComplementNB
from sklearn.pipeline import Pipeline
CATEGORIES = [
"alt.atheism",
"comp.graphics",
"comp.os.ms-windows.misc",
"comp.sys.ibm.pc.hardware",
"comp.sys.mac.hardware",
"comp.windows.x",
"misc.forsale",
"rec.autos",
"rec.motorcycles",
"rec.sport.baseball",
"rec.sport.hockey",
"sci.crypt",
"sci.electronics",
"sci.med",
"sci.space",
"soc.religion.christian",
"talk.politics.guns",
"talk.politics.mideast",
"talk.politics.misc",
"talk.religion.misc",
]
def shorten_param(param_name):
"""Remove components' prefixes in param_name."""
if "__" in param_name:
return param_name.rsplit("__", 1)[1]
return param_name
def train_model(categories, vect__max_df, vect__min_df, vect__ngram_range, vect__norm):
pipeline = Pipeline(
[
("vect", TfidfVectorizer()),
("clf", ComplementNB()),
]
)
parameters_grid = {
"vect__max_df": [eval(value) for value in vect__max_df.split(",")],
"vect__min_df": [eval(value) for value in vect__min_df.split(",")],
"vect__ngram_range": eval(vect__ngram_range), # unigrams or bigrams
"vect__norm": [value.strip() for value in vect__norm.split(",")],
"clf__alpha": np.logspace(-6, 6, 13),
}
print(parameters_grid)
data_train = fetch_20newsgroups(
subset="train",
categories=categories,
shuffle=True,
random_state=42,
remove=("headers", "footers", "quotes"),
)
data_test = fetch_20newsgroups(
subset="test",
categories=categories,
shuffle=True,
random_state=42,
remove=("headers", "footers", "quotes"),
)
pipeline = Pipeline(
[
("vect", TfidfVectorizer()),
("clf", ComplementNB()),
]
)
random_search = RandomizedSearchCV(
estimator=pipeline,
param_distributions=parameters_grid,
n_iter=40,
random_state=0,
n_jobs=2,
verbose=1,
)
random_search.fit(data_train.data, data_train.target)
best_parameters = json.dumps(
random_search.best_estimator_.get_params(),
indent=4,
sort_keys=True,
default=str,
)
test_accuracy = random_search.score(data_test.data, data_test.target)
cv_results = pd.DataFrame(random_search.cv_results_)
cv_results = cv_results.rename(shorten_param, axis=1)
param_names = [shorten_param(name) for name in parameters_grid.keys()]
labels = {
"mean_score_time": "CV Score time (s)",
"mean_test_score": "CV score (accuracy)",
}
fig = px.scatter(
cv_results,
x="mean_score_time",
y="mean_test_score",
error_x="std_score_time",
error_y="std_test_score",
hover_data=param_names,
labels=labels,
)
fig.update_layout(
title={
"text": "trade-off between scoring time and mean test score",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
}
)
column_results = param_names + ["mean_test_score", "mean_score_time"]
transform_funcs = dict.fromkeys(column_results, lambda x: x)
# Using a logarithmic scale for alpha
transform_funcs["alpha"] = math.log10
# L1 norms are mapped to index 1, and L2 norms to index 2
transform_funcs["norm"] = lambda x: 2 if x == "l2" else 1
# Unigrams are mapped to index 1 and bigrams to index 2
transform_funcs["ngram_range"] = lambda x: x[1]
fig2 = px.parallel_coordinates(
cv_results[column_results].apply(transform_funcs),
color="mean_test_score",
color_continuous_scale=px.colors.sequential.Viridis_r,
labels=labels,
)
fig2.update_layout(
title={
"text": "Parallel coordinates plot of text classifier pipeline",
"y": 0.99,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
}
)
return fig, fig2, best_parameters, test_accuracy
def load_description(name):
with open(f"./descriptions/{name}.md", "r") as f:
return f.read()
AUTHOR = """
Created by [@dominguesm](https://huggingface.co/dominguesm) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_text_feature_extraction.html)
"""
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Row():
with gr.Column():
gr.Markdown("# Sample pipeline for text feature extraction and evaluation")
gr.Markdown(load_description("description_part1"))
gr.Markdown(load_description("description_part2"))
gr.Markdown(AUTHOR)
with gr.Row():
with gr.Column():
gr.Markdown("""## CATEGORY SELECTION""")
gr.Markdown(load_description("description_category_selection"))
drop_categories = gr.Dropdown(
CATEGORIES,
value=["alt.atheism", "talk.religion.misc"],
multiselect=True,
label="Categories",
info="Please select up to two categories that you want to receive training on.",
max_choices=2,
interactive=True,
)
with gr.Row():
with gr.Column():
gr.Markdown("""## PARAMETERS GRID""")
gr.Markdown(load_description("description_parameter_grid"))
with gr.Column():
gr.Markdown("""### Classifier Alpha""")
gr.Markdown(load_description("parameter_grid/alpha"))
clf__alpha = gr.Textbox(
label="clf__alpha",
value="1.e-06, 1.e-05, 1.e-04",
info="Due to practical considerations, this parameter was kept constant.",
interactive=False,
)
with gr.Column():
gr.Markdown("""### Vectorizer max_df""")
gr.Markdown(load_description("parameter_grid/max_df"))
vect__max_df = gr.Textbox(
label="vect__max_df",
value="0.2, 0.4, 0.6, 0.8, 1.0",
info="Values ranging from 0 to 1.0, separated by a comma.",
interactive=True,
)
with gr.Column():
gr.Markdown("""### Vectorizer min_df""")
gr.Markdown(load_description("parameter_grid/min_df"))
vect__min_df = gr.Textbox(
label="vect__min_df",
value="1, 3, 5, 10",
info="Values ranging from 0 to 1.0, separated by a comma, or integers separated by a comma. If float, the parameter represents a proportion of documents, integer absolute counts.",
interactive=True,
)
with gr.Column():
gr.Markdown("""### Vectorizer ngram_range""")
gr.Markdown(load_description("parameter_grid/ngram_range"))
vect__ngram_range = gr.Textbox(
label="vect__ngram_range",
value="(1, 1), (1, 2)",
info="""Tuples of integer values separated by a comma. For example an ``ngram_range`` of ``(1, 1)`` means only unigrams, ``(1, 2)`` means unigrams and bigrams, and ``(2, 2)`` means only bigrams.""",
interactive=True,
)
with gr.Column():
gr.Markdown("""### Vectorizer norm""")
gr.Markdown(load_description("parameter_grid/norm"))
gr.Markdown(
"""- 'l2': Sum of squares of vector elements is 1. The cosine
similarity between two vectors is their dot product when l2 norm has
been applied.
- 'l1': Sum of absolute values of vector elements is 1."""
)
vect__norm = gr.Textbox(
label="vect__norm",
value="l1, l2",
info="'l1' or 'l2', separated by a comma",
interactive=True,
)
with gr.Row():
gr.Markdown(
"""
## MODEL PIPELINE
```python
pipeline = Pipeline(
[
("vect", TfidfVectorizer()),
("clf", ComplementNB()),
]
)
```
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("""## TRAINING""")
with gr.Row():
brn_train = gr.Button("Train").style(container=False)
gr.Markdown("## RESULTS")
with gr.Row():
best_parameters = gr.Textbox(label="Best parameters")
test_accuracy = gr.Textbox(label="Test accuracy")
plot_trade = gr.Plot(label="")
plot_coordinates = gr.Plot(label="")
brn_train.click(
train_model,
[drop_categories, vect__max_df, vect__min_df, vect__ngram_range, vect__norm],
[plot_trade, plot_coordinates, best_parameters, test_accuracy],
)
app.launch()
|