File size: 10,201 Bytes
1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 920c7b5 c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b c100c37 1e5728b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn.kernel_approximation import Nystroem
from sklearn.linear_model import SGDOneClassSVM
from sklearn.pipeline import make_pipeline
from sklearn.svm import OneClassSVM
md_description = """
This example shows how to approximate the solution of [sklearn.svm.OneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) in the case of an RBF kernel with [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM), a Stochastic Gradient Descent (SGD) version of the One-Class SVM. A kernel approximation is first used in order to apply [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM) which implements a linear One-Class SVM using SGD.
Note that [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDOneClassSVM.html#sklearn.linear_model.SGDOneClassSVM) scales linearly with the number of samples whereas the complexity of a kernelized [sklearn.svm.OneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) is at best quadratic with respect to the number of samples. It is not the purpose of this example to illustrate the benefits of such an approximation in terms of computation time but rather to show that we obtain similar results on a toy dataset.
"""
font = {"weight": "normal", "size": 15}
matplotlib.rc("font", **font)
random_state = 42
rng = np.random.RandomState(random_state)
# rng = np.random.default_rng(random_state)
# Generate train data
X = 0.3 * rng.randn(500, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 50), np.linspace(-4.5, 4.5, 50))
# OCSVM hyperparameters
# nu = 0.05
# gamma = 2.0
def make_regression(nu, gamma):
clf = OneClassSVM(gamma=gamma, kernel="rbf", nu=nu)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Fit the One-Class SVM using a kernel approximation and SGD
transform = Nystroem(gamma=gamma, random_state=random_state)
clf_sgd = SGDOneClassSVM(
nu=nu, shuffle=True, fit_intercept=True, random_state=random_state, tol=1e-4
)
pipe_sgd = make_pipeline(transform, clf_sgd)
pipe_sgd.fit(X_train)
y_pred_train_sgd = pipe_sgd.predict(X_train)
y_pred_test_sgd = pipe_sgd.predict(X_test)
y_pred_outliers_sgd = pipe_sgd.predict(X_outliers)
n_error_train_sgd = y_pred_train_sgd[y_pred_train_sgd == -1].size
n_error_test_sgd = y_pred_test_sgd[y_pred_test_sgd == -1].size
n_error_outliers_sgd = y_pred_outliers_sgd[y_pred_outliers_sgd == 1].size
Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z_sgd = Z_sgd.reshape(xx.shape)
def make_plot(title, curr_z):
fig = plt.figure(figsize=(9, 6))
ax = fig.add_subplot(111)
ax.set_title(title)
ax.contourf(xx, yy, curr_z, levels=np.linspace(curr_z.min(), 0, 7), cmap=plt.cm.PuBu)
a = ax.contour(xx, yy, curr_z, levels=[0], linewidths=2, colors="darkred")
ax.contourf(xx, yy, curr_z, levels=[0, curr_z.max()], colors="palevioletred")
s = 20
b1 = ax.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
b2 = ax.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
c = ax.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
ax.axis("tight")
ax.set_xlim((-4.5, 4.5))
ax.set_ylim((-4.5, 4.5))
ax.legend(
[a.collections[0], b1, b2, c],
[
"learned frontier",
"training observations",
"new regular observations",
"new abnormal observations",
],
loc="upper left",
)
ax.set_xlabel(
"error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
% (
n_error_train_sgd,
X_train.shape[0],
n_error_test_sgd,
X_test.shape[0],
n_error_outliers_sgd,
X_outliers.shape[0],
)
)
return fig
return (
make_plot("One Class SVM", Z),
make_plot("Online One-Class SVM", Z_sgd),
make_example(nu, gamma),
)
def make_example(nu, gamma):
return f"""
With the following code you can reproduce this example with the current values of the sliders and the same data in a notebook:
```python
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from sklearn.svm import OneClassSVM
from sklearn.linear_model import SGDOneClassSVM
from sklearn.kernel_approximation import Nystroem
from sklearn.pipeline import make_pipeline
font = {{"weight": "normal", "size": 15}}
matplotlib.rc("font", **font)
rng = np.random.RandomState(random_state)
# Generate train data
X = 0.3 * rng.randn(500, 2)
X_train = np.r_[X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 50), np.linspace(-4.5, 4.5, 50))
# OCSVM hyperparameters
nu = {nu}
gamma = {gamma}
# Fit the One-Class SVM
clf = OneClassSVM(gamma=gamma, kernel="rbf", nu=nu)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Fit the One-Class SVM using a kernel approximation and SGD
transform = Nystroem(gamma=gamma, random_state=random_state)
clf_sgd = SGDOneClassSVM(
nu=nu, shuffle=True, fit_intercept=True, random_state=random_state, tol=1e-4
)
pipe_sgd = make_pipeline(transform, clf_sgd)
pipe_sgd.fit(X_train)
y_pred_train_sgd = pipe_sgd.predict(X_train)
y_pred_test_sgd = pipe_sgd.predict(X_test)
y_pred_outliers_sgd = pipe_sgd.predict(X_outliers)
n_error_train_sgd = y_pred_train_sgd[y_pred_train_sgd == -1].size
n_error_test_sgd = y_pred_test_sgd[y_pred_test_sgd == -1].size
n_error_outliers_sgd = y_pred_outliers_sgd[y_pred_outliers_sgd == 1].size
Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z_sgd = Z_sgd.reshape(xx.shape)
# plot the level sets of the decision function
def make_plot(Z_curr, title):
plt.figure(figsize=(9, 6))
plt.title(title)
plt.contourf(xx, yy, Z_curr, levels=np.linspace(Z_curr.min(), 0, 7), cmap=plt.cm.PuBu)
a = plt.contour(xx, yy, Z_curr, levels=[0], linewidths=2, colors="darkred")
plt.contourf(xx, yy, Z_curr, levels=[0, Z_curr.max()], colors="palevioletred")
s = 20
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
plt.axis("tight")
plt.xlim((-4.5, 4.5))
plt.ylim((-4.5, 4.5))
plt.legend(
[a.collections[0], b1, b2, c],
[
"learned frontier",
"training observations",
"new regular observations",
"new abnormal observations",
],
loc="upper left",
)
plt.xlabel(
"error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
% (
n_error_train,
X_train.shape[0],
n_error_test,
X_test.shape[0],
n_error_outliers,
X_outliers.shape[0],
)
)
plt.show()
make_plot(Z, "One-Class SVM")
make_plot(Z_sgd, "Online One-Class SVM")
```
"""
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# One-Class SVM versus One-Class SVM using Stochastic Gradient Descent")
with gr.Row():
with gr.Column():
gr.Markdown(md_description)
with gr.Column():
slider_nu = gr.Slider(minimum=0.01, maximum=1, label="Nu", step=0.025, value=0.05)
slider_gamma = gr.Slider(minimum=0.1, maximum=3, label="Gamma", step=0.1, value=2.0)
button = gr.Button("Generate")
with gr.Row():
with gr.Column():
plot1 = gr.Plot(label="Output")
with gr.Column():
plot2 = gr.Plot(label="Output")
with gr.Row():
example = gr.Markdown("")
slider_nu.change(
fn=make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example]
)
slider_gamma.change(
fn=make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example]
)
button.click(make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example])
demo.load(make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example])
demo.launch()
|