File size: 4,180 Bytes
630caba cd26789 630caba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import CCA
from matplotlib import cm
plt.switch_backend('agg')
def plot_hyperplane(clf, min_x, max_x, linestyle, linecolor, label):
"""
This function is used to plot the hyperplane obtained from the classifier.
:param clf: the classifier model
:param min_x: the minimum value of X
:param max_x: the maximum value of x
:param linestyle: the style of line one needs in the plot.
:param label: the label for the hyperplane
"""
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(min_x - 5, max_x + 5)
yy = a * xx - (clf.intercept_[0]) / w[1]
plt.plot(xx, yy, linestyle, color=linecolor, linewidth=2.5, label=label)
def multilabel_classification(n_samples:int, n_classes: int, n_labels: int, allow_unlabeled: bool, decompostion: str) -> "plt.Figure":
"""
This function is used to perform multilabel classification.
:param n_samples: the number of samples.
:param n_classes: the number of classes for the classification problem.
:param n_labels: the average number of labels per instance.
:param allow_unlabeled: if set to True some instances might not belong to any class.
:param decompostion: the type of decomposition algorithm to use.
:returns: a matplotlib figure.
"""
X, Y = make_multilabel_classification(
n_samples=n_samples,
n_classes=n_classes, n_labels=n_labels, allow_unlabeled=allow_unlabeled, random_state=42)
if decomposition == "PCA":
X = PCA(n_components=2).fit_transform(X)
else:
X = CCA(n_components=2).fit(X, Y).transform(X)
min_x = np.min(X[:, 0])
max_x = np.max(X[:, 0])
min_y = np.min(X[:, 1])
max_y = np.max(X[:, 1])
model = OneVsRestClassifier(SVC(kernel="linear"))
model.fit(X, Y)
fig, ax = plt.subplots(1, 1, figsize=(24, 15))
ax.scatter(X[:, 0], X[:, 1], s=40, c="gray", edgecolors=(0, 0, 0))
# colors = cm.rainbow(np.linspace(0, 1, n_classes))
colors = cm.get_cmap('tab10', 10)(np.linspace(0, 1, 10))
for nc in range(n_classes):
cl = np.where(Y[:, nc])
ax.scatter(X[cl, 0], X[cl, 1], s=np.random.random_integers(20, 200),
edgecolors=colors[nc], facecolors="none", linewidths=2, label=f"Class {nc+1}")
plot_hyperplane(model.estimators_[nc], min_x, max_x, "--", colors[nc], f"Boundary for class {nc+1}")
ax.set_xticks(())
ax.set_yticks(())
ax.set_xlim(min_x - .5 * max_x, max_x + .5 * max_x)
ax.set_ylim(min_y - .5 * max_y, max_y + .5 * max_y)
ax.legend()
return fig
with gr.Blocks() as demo:
gr.Markdown("""
# Multilabel Classification
This space is an implementation of the scikit-learn document [Multilabel Classification](https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_multilabel.html#sphx-glr-auto-examples-miscellaneous-plot-multilabel-py).
The objective of this space is to simulate a multi-label document classification problem, where the data is generated randomly.
""")
n_samples = gr.Slider(100, 10_000, label="n_samples", info="the number of samples")
n_classes = gr.Slider(2, 10, label="n_classes", info="the number of classes that data should have.", step=1)
n_labels = gr.Slider(1, 10, label="n_labels", info="the average number of labels per instance", step=1)
allow_unlabeled = gr.Checkbox(True, label="allow_unlabeled", info="If set to True some instances might not belong to any class.")
decomposition = gr.Dropdown(['PCA', 'CCA'], label="decomposition", info="the type of decomposition algorithm to use.")
output = gr.Plot(label="Plot")
compute_btn = gr.Button("Compute")
compute_btn.click(fn=multilabel_classification, inputs=[n_samples, n_classes, n_labels, allow_unlabeled, decomposition],
outputs=output, api_name="multilabel")
demo.launch() |