File size: 2,564 Bytes
e20adf1 3acc366 e20adf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from PIL import Image
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF, DotProduct
def classify_xor_dataset(kernel_name):
xx, yy = np.meshgrid(np.linspace(-3, 3, 50), np.linspace(-3, 3, 50))
rng = np.random.RandomState(0)
X = rng.randn(200, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
# fit the model
fig, ax = plt.subplots(figsize=(10, 5))
kernels = [1.0 * RBF(length_scale=1.15), 1.0 * DotProduct(sigma_0=1.0) ** 2]
kernel_idx = 0 if kernel_name == "RBF" else 1
kernel = kernels[kernel_idx]
clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y)
# plot the decision function for each datapoint on the grid
Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1]
Z = Z.reshape(xx.shape)
ax.imshow(
Z,
interpolation="nearest",
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
aspect="auto",
origin="lower",
cmap=plt.cm.PuOr_r,
)
ax.contour(xx, yy, Z, levels=[0.5], linewidths=2, colors=["k"])
ax.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors=(0, 0, 0))
ax.set_xticks(())
ax.set_yticks(())
ax.axis([-3, 3, -3, 3])
ax.set_title(
"%s\n Log-Marginal-Likelihood:%.3f"
% (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)),
fontsize=12,
)
fig.canvas.draw()
pil_image = Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
plt.close(fig)
return pil_image
title = "Gaussian Process Classification on the XOR Dataset"
description = "This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better results. See the original scikit-learn example at https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_xor.html"
kernel_options = ["RBF", "DotProduct"]
iface = gr.Interface(
classify_xor_dataset,
gr.inputs.Radio(choices=kernel_options, label="Kernel"),
gr.outputs.Image(label="Decision Boundary", type="pil"),
title=title,
description=description,
theme="default",
layout="vertical",
analytics_enabled=False
)
iface.launch()
|