File size: 6,054 Bytes
980d811
 
 
ae21ded
 
980d811
 
 
 
 
 
 
 
ae21ded
 
980d811
ae21ded
980d811
 
 
 
 
 
 
 
 
ae21ded
 
980d811
ae21ded
980d811
 
 
 
 
 
 
 
 
 
 
 
ae21ded
 
 
 
 
 
 
 
 
 
 
980d811
ae21ded
980d811
 
 
 
 
 
 
 
 
 
ae21ded
 
 
 
 
980d811
 
 
 
 
 
 
ae21ded
 
 
 
 
 
 
 
980d811
 
 
 
 
 
 
ae21ded
980d811
ae21ded
980d811
 
 
 
 
 
 
 
ae21ded
 
 
 
 
 
980d811
 
 
 
 
 
ae21ded
 
 
980d811
 
 
ae21ded
980d811
 
 
 
 
 
 
 
 
ae21ded
 
 
 
 
 
980d811
 
 
ae21ded
 
 
 
 
 
980d811
 
 
 
 
 
 
ae21ded
 
 
 
 
 
 
 
 
 
 
980d811
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import gradio as gr

from sklearn.datasets import make_checkerboard
from sklearn.cluster import SpectralBiclustering
from sklearn.metrics import consensus_score

import plotly.express as px


score = [0.0]


def dataset(n_cluster_rows, n_cluster_cols, noise=5, n_rows=300, n_cols=300):
    data, rows, columns = make_checkerboard(
        shape=(n_rows, n_cols),
        n_clusters=(n_cluster_rows, n_cluster_cols),
        noise=noise,
        shuffle=False,
        random_state=0,
    )

    fig = px.imshow(data, title="Original Data")
    return fig


def shuffle_dataset(n_cluster_rows, n_cluster_cols, noise=5, n_rows=300, n_cols=300):
    data, rows, columns = make_checkerboard(
        shape=(n_rows, n_cols),
        n_clusters=(n_cluster_rows, n_cluster_cols),
        noise=noise,
        shuffle=False,
        random_state=0,
    )
    rng = np.random.RandomState(0)
    row_idx = rng.permutation(data.shape[0])
    col_idx = rng.permutation(data.shape[1])
    data = data[row_idx][:, col_idx]
    fig = px.imshow(data, title="Shuffled Data")
    return fig


def model_fit(
    n_cluster_rows,
    n_cluster_cols,
    noise,
    n_rows,
    n_cols,
    n_cluster_rows_,
    n_cluster_cols_,
    svd_method,
):
    data, rows, columns = make_checkerboard(
        shape=(n_rows, n_cols),
        n_clusters=(n_cluster_rows, n_cluster_cols),
        noise=noise,
        shuffle=False,
        random_state=0,
    )
    fig_original = px.imshow(data, title="Original Data")
    rng = np.random.RandomState(0)
    row_idx = rng.permutation(data.shape[0])
    col_idx = rng.permutation(data.shape[1])
    data = data[row_idx][:, col_idx]
    fig_shuffled = px.imshow(data, title="Shuffled Data")
    model = SpectralBiclustering(
        n_clusters=(n_cluster_rows_, n_cluster_cols_),
        method="log",
        random_state=0,
        svd_method=svd_method,
    )
    model.fit(data)
    score.append(
        consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx]))
    )
    fit_data = data[np.argsort(model.row_labels_)]
    fit_data = fit_data[:, np.argsort(model.column_labels_)].T
    fig = px.imshow(fit_data, title="After Bi-Clustering")

    fig_1 = px.imshow(
        np.outer(np.sort(model.row_labels_) + 1, np.sort(model.column_labels_) + 1),
        title="Checkerboard structure of rearranged data",
    )

    return fig_original, fig_shuffled, fig, fig_1


def get_score():
    return score[-1].__format__(".3f")


with gr.Blocks() as demo:
    gr.Markdown("## Spectral Bi-Clustering")
    gr.Markdown(
        "Demo is based on the [Spectral Bi-Clustering](https://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html) example from scikit-learn. The goal of co-clustering is to find subgroups of rows and columns that are highly correlated. The data is first shuffled, then the rows and columns are reordered to match the biclusters. The consensus score is a measure of how well the biclusters found by the model match the true biclusters. The score is between 0 and 1, with 1 being a perfect match."
    )

    with gr.Tab("Data"):
        gr.Markdown("## Play with the parameters to see how the data changes")
        gr.Markdown("### Parameters")
        with gr.Row():
            n_rows = gr.Slider(1, 500, label="Number of Rows", value=300, step=1)
            n_cols = gr.Slider(1, 500, label="Number of Columns", value=300, step=1)
            n_cluster_rows = gr.Slider(
                1, 50, label="Number of Clusters Rows", value=5, step=1
            )
            n_cluster_cols = gr.Slider(
                1, 50, label="Number of Clusters Columns", value=5, step=1
            )
            noise = gr.Slider(0, 10, label="Noise", value=5, step=1)
        with gr.Row():
            gen_btn = gr.Button("Generate Data")
            shu_btn = gr.Button("Shuffle Data")
        with gr.Row():
            gen_btn.click(
                fn=dataset,
                inputs=[n_cluster_rows, n_cluster_cols, noise, n_rows, n_cols],
                outputs=gr.Plot(),
            )
            shu_btn.click(
                fn=shuffle_dataset,
                inputs=[n_cluster_rows, n_cluster_cols, noise, n_rows, n_cols],
                outputs=gr.Plot(),
            )

    with gr.Tab("Model"):
        gr.Markdown("## Model")
        gr.Markdown("### Data Parameters")
        with gr.Row():
            n_rows = gr.Slider(1, 500, label="Number of Rows", value=300, step=1)
            n_cols = gr.Slider(1, 500, label="Number of Columns", value=300, step=1)
            n_cluster_rows = gr.Slider(
                1, 50, label="Number of Clusters Rows", value=5, step=1
            )
            n_cluster_cols = gr.Slider(
                1, 50, label="Number of Clusters Columns", value=5, step=1
            )
            noise = gr.Slider(0, 10, label="Noise", value=5, step=1)
        gr.Markdown("### Model Parameters")
        with gr.Row():
            n_cluster_rows_ = gr.Slider(
                1, 50, label="Number of Clusters Rows", value=5, step=1
            )
            n_cluster_cols_ = gr.Slider(
                1, 50, label="Number of Clusters Columns", value=5, step=1
            )
            svd_method = gr.Dropdown(
                ["randomized", "arpack"], label="SVD Method", value="randomized"
            )
        model_btn = gr.Button("Fit Model")
        with gr.Row():
            model_btn.click(
                fn=model_fit,
                inputs=[
                    n_cluster_rows,
                    n_cluster_cols,
                    noise,
                    n_rows,
                    n_cols,
                    n_cluster_rows_,
                    n_cluster_cols_,
                    svd_method,
                ],
                outputs=[gr.Plot(), gr.Plot(), gr.Plot(), gr.Plot()],
            )
        gr.Markdown("### Consensus Score")
        score_btn = gr.Button("Get Score")
        with gr.Row():
            score_btn.click(fn=get_score, outputs=gr.Text())


demo.launch()