Spaces:
Runtime error
Runtime error
File size: 6,948 Bytes
da180b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import time
import torch
import streamlit as st
from PIL import Image, ImageDraw
from streamlit_image_coordinates import streamlit_image_coordinates
import draggan
import utils
## Default to CPU if no GPU is available
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
### Streamlit setup ###
st.set_page_config(
page_title="DragGAN Demo",
page_icon="π",
layout="wide",
)
message_container = st.empty()
col1, col2 = st.columns([1, 2])
def reset():
st.session_state.clear()
def reset_rerun():
reset()
st.experimental_rerun()
### Run/Reset buttons in right col ###
with col2:
st.markdown("")
but_col1, but_col2 = st.columns([1,7])
run_button = but_col1.button("βΆοΈ Run")
reset_button = but_col2.button("π Reset")
### Settings panel in left col ###
with col1:
st.header("π DragGAN")
settings_col1, settings_col2 = st.columns([1,1])
# Models from Self-Distilled SG https://github.com/self-distilled-stylegan/self-distilled-internet-photos
model_options = {
"Lions": "https://storage.googleapis.com/self-distilled-stylegan/lions_512_pytorch.pkl",
"Faces (FFHQ)": "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl",
"Elephants": "https://storage.googleapis.com/self-distilled-stylegan/elephants_512_pytorch.pkl",
"Parrots": "https://storage.googleapis.com/self-distilled-stylegan/parrots_512_pytorch.pkl",
"Horses": "https://storage.googleapis.com/self-distilled-stylegan/horses_256_pytorch.pkl",
"Bicycles": "https://storage.googleapis.com/self-distilled-stylegan/bicycles_256_pytorch.pkl",
"Giraffes": "https://storage.googleapis.com/self-distilled-stylegan/giraffes_512_pytorch.pkl",
"Dogs (1)": "https://storage.googleapis.com/self-distilled-stylegan/dogs_1024_pytorch.pkl",
"Dogs (2)": "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/afhqdog.pkl",
"Cats": "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/afhqcat.pkl",
"Wildlife": "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/afhqwild.pkl",
"MetFaces": "https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl",
}
model_name = str(settings_col1.selectbox("Model", list(model_options.keys()), on_change=reset, help="StyleGAN2 model to use, downloaded and cached on first run"))
model_url = model_options[model_name]
seed = settings_col2.number_input("Seed", value=22, step=1, min_value=0, on_change=reset, help="Random seed for generating W+ latent")
target_resolution = int(settings_col1.selectbox("Resolution", [256, 512, 1024], index=1, on_change=reset, help="Resize generated image to this resolution (may be different than native model resolution)"))
n_iter = int(settings_col1.number_input("Iterations", value=200, step=5, help="Number of iterations to run optimization", on_change=reset))
step_size = settings_col2.number_input("Step Size", value=1e-3, step=1e-4, min_value=1e-4, format="%.4f", help="Step size (Learning Rate) for gradient descent")
multiplier = settings_col1.number_input("Speed", value=1.0, step=0.05, min_value=0.05, help="Multiplier for target patch movement")
tolerance = settings_col2.number_input("Tolerance", value=2, step=1, min_value=1, help="Number of pixels away from target to stop")
display_every = settings_col2.number_input("Display Every", value=25, step=1, min_value=1, help="Display image during optimization every n iterations")
truncation_psi = settings_col1.number_input("Truncation", value=0.8, step=0.1, min_value=0.0, on_change=reset, help="Truncation trick value to control diversity (higher = more diverse)")
truncation_cutoff = settings_col2.number_input(
"Truncation Cutoff", value=8, step=1, min_value=-1, max_value=18, on_change=reset, help="Number of layers to apply truncation to (-1 = all layers)"
)
if reset_button:
reset_rerun()
if "points" not in st.session_state:
st.session_state["points"] = []
st.session_state["points_types"] = []
# State variable to track whether the next click should be a 'handle' or 'target'
st.session_state["next_click"] = "handle"
s = time.perf_counter()
G = draggan.load_model(model_url, device=device)
if "W" not in st.session_state:
W = draggan.generate_W(
G,
seed=int(seed),
truncation_psi=truncation_psi,
truncation_cutoff=int(truncation_cutoff),
network_pkl=model_url,
device=device,
)
else:
W = st.session_state["W"]
img, F0 = draggan.generate_image(W, G, network_pkl=model_url, device=device)
if img.size[0] != target_resolution:
img = img.resize((target_resolution, target_resolution))
print(f"Generated image in {(time.perf_counter() - s)*1000:.0f}ms")
# Draw an ellipse at each coordinate in points
if "points" in st.session_state and "points_types" in st.session_state:
handles, targets = [], []
for point, point_type in zip(
st.session_state["points"], st.session_state["points_types"]
):
if point_type == "handle":
handles.append(point)
else:
targets.append(point)
if len(handles) > 0:
utils.draw_handle_target_points(img, handles, targets)
### Right column image container ###
with col2:
empty = st.empty()
with empty.container():
value = streamlit_image_coordinates(img, key="pil")
# New point is clicked
if value is not None:
point = value["x"], value["y"]
if point not in st.session_state["points"]:
# st.session_state["points"].append(point)
st.session_state["points"].append(point)
st.session_state["points_types"].append(st.session_state["next_click"])
st.session_state["next_click"] = (
"target" if st.session_state["next_click"] == "handle" else "handle"
)
st.experimental_rerun()
## Optimization loop
if run_button:
if len(handles) > 0 and len(targets) > 0 and len(handles) == len(targets) and all(targets):
W = draggan.optimize(
W,
G,
handle_points=handles,
target_points=targets,
r1=3,
r2=12,
tolerance=tolerance,
max_iter=n_iter,
lr=step_size,
multiplier=multiplier,
empty=empty,
display_every=display_every,
target_resolution=target_resolution,
device=device,
)
# st.write(handles)
# st.write(targets)
st.session_state.clear()
st.session_state["W"] = W
st.experimental_rerun()
else:
message_container.warning("Please add at least one handle and one target point.")
|