File size: 9,891 Bytes
fb238e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# -*- coding: utf-8 -*-
import re
import six
import unicodedata
import torch
import rouge
import numpy as np
import random
# from fengshen.examples.pegasus.pegasus_utils import text_segmentate
import sys
sys.path.append('../../../')
rouge = rouge.Rouge()
is_py2 = six.PY2
if not is_py2:
basestring = str
def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF)
or (cp >= 0x20000 and cp <= 0x2A6DF)
or (cp >= 0x2A700 and cp <= 0x2B73F)
or (cp >= 0x2B740 and cp <= 0x2B81F)
or (cp >= 0x2B820 and cp <= 0x2CEAF)
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F)):
return True
return False
def _is_whitespace(char):
"""Checks whether `char` is a whitespace character."""
# \t, \n, and \r are technically control characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `char` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `char` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (
cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def is_string(s):
"""判断是否是字符串
"""
return isinstance(s, basestring)
def is_stopwords(word, stopwords):
if word in stopwords:
return True
else:
return False
def text_segmentate(text):
en_seg_pattern = '((?:\\!|\\?|\\.|\\n)+(?:\\s)+)'
ch_seg_pattern = '((?:?|!|。|\\n)+)'
try:
text = re.sub(en_seg_pattern, r'\1[SEP]', text)
# print("sub text: ", text)
except Exception as e:
print("input: ", text)
raise e
text = re.sub(ch_seg_pattern, r'\1[SEP]', text)
# print("sub ch text: ", text)
text_list = text.split("[SEP]")
text_list = list(filter(lambda x: len(x) != 0, text_list))
return text_list
def load_stopwords(stopwords_path):
stopwords_dict = {}
with open(stopwords_path, "r") as rf:
for line in rf:
line = line.strip()
if line not in stopwords_dict:
stopwords_dict[line] = 0
else:
pass
return stopwords_dict
def text_process(text, max_length):
"""分割文本
"""
texts = text_segmentate(text)
result, length = [], 0
for text in texts:
if length + len(text) > max_length * 1.3 and len(result) >= 3:
yield result
result, length = [], 0
result.append(text)
length += len(text)
if result and len(result) >= 3:
yield result
def text_process_split_long_content(text, max_length):
"""分割长文本
"""
texts = text_segmentate(text)
result, sentence_num = "", 0
for text in texts:
if len(text) > 500:
if len(result) > 300 and sentence_num >= 3:
yield result
result, sentence_num = "", 0
else:
result, sentence_num = "", 0
continue
else:
if len(result) + len(text) > max_length * 1.1 and sentence_num >= 3:
yield result
result, sentence_num = "", 0
result += text
sentence_num += 1
if result and sentence_num >= 3:
yield result
def gather_join(texts, idxs):
"""取出对应的text,然后拼接起来
"""
return ''.join([texts[i] for i in idxs])
def gather_join_f1(texts_token, idsx):
join_texts = []
for id in idsx:
join_texts.extend(texts_token[id])
return join_texts
def compute_rouge(source, target):
"""计算rouge-1、rouge-2、rouge-l
"""
source, target = ' '.join(source), ' '.join(target)
try:
scores = rouge.get_scores(hyps=source, refs=target)
return {
'rouge-1': scores[0]['rouge-1']['f'],
'rouge-2': scores[0]['rouge-2']['f'],
'rouge-l': scores[0]['rouge-l']['f'],
}
except ValueError:
return {
'rouge-1': 0.0,
'rouge-2': 0.0,
'rouge-l': 0.0,
}
def remove_stopwords(texts, stopwords_dict):
for i, text in enumerate(texts):
texts[i] = list(filter(lambda x: x not in stopwords_dict, text))
return texts
def pseudo_summary_f1(texts,
stopwords,
tokenizer,
max_length,
rouge_strategy="rouge-l"):
"""构建伪标签摘要数据集
"""
summary_rate = 0.25
max_length = max_length - 1
texts_tokens = []
sentece_idxs_vec = []
for text in texts:
if len(texts) == 0:
continue
try:
ids = tokenizer.encode(text.strip())[:-1]
except ValueError:
print("error, input : ", text)
raise ValueError
sentece_idxs_vec.append(ids)
tokens = [tokenizer._convert_id_to_token(token) for token in ids]
texts_tokens.append(tokens)
texts_tokens_rm = remove_stopwords(texts_tokens, stopwords)
source_idxs, target_idxs = list(range(len(texts))), []
assert len(texts_tokens) == len(texts)
# truncate_index = 0
while True:
sims = []
for i in source_idxs:
new_source_idxs = [j for j in source_idxs if j != i]
new_target_idxs = sorted(target_idxs + [i])
new_source = gather_join_f1(texts_tokens_rm, new_source_idxs)
new_target = gather_join_f1(texts_tokens_rm, new_target_idxs)
sim = compute_rouge(new_source, new_target)[rouge_strategy]
sims.append(sim)
new_idx = source_idxs[np.argmax(sims)]
del sims
source_idxs.remove(new_idx)
target_idxs = sorted(target_idxs + [new_idx])
source = gather_join(texts, source_idxs)
target = gather_join(texts, target_idxs)
try:
if (len(source_idxs) == 1
or 1.0 * len(target) / len(source) > summary_rate):
break
except ZeroDivisionError as e:
print(e.meesage)
print(texts)
print("source: ", source)
print("target: ", target)
if len(source) < len(target):
source, target = target, source
source_idxs, target_idxs = target_idxs, source_idxs
return sentece_idxs_vec, source, target, source_idxs, target_idxs
def get_input_mask(sentence_id_vec, indexs):
target_idxs = []
input_idxs = []
kMaskSentenceTokenId = 2
kEosTokenId = 1
mask_sentence_options_cumulative_prob = [0.9, 0.9, 1, 1]
for index in indexs:
target_idxs.extend(sentence_id_vec[index])
choice = random.uniform(0, 1)
if choice < mask_sentence_options_cumulative_prob[0]:
# print("mask index: ", index)
sentence_id_vec[index] = [kMaskSentenceTokenId]
elif choice < mask_sentence_options_cumulative_prob[1]:
# print("replace index: ", index)
replace_id = random.randint(0, len(sentence_id_vec))
sentence_id_vec[index] = sentence_id_vec[replace_id]
elif choice < mask_sentence_options_cumulative_prob[2]:
pass
else:
sentence_id_vec[index] = []
target_idxs.append(kEosTokenId)
# print(sentence_id_vec)
for index, sentence_id in enumerate(sentence_id_vec):
# print(index, sentence_id)
if len(sentence_id) == 0:
continue
input_idxs.extend(sentence_id_vec[index])
input_idxs.append(kEosTokenId)
return input_idxs, target_idxs
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int,
decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def padding_to_maxlength(ids, max_length, pad_id):
cur_len = len(ids)
len_diff = max_length - cur_len
return ids + [pad_id] * len_diff, [1] * cur_len + [0] * len_diff
|