Spaces:
Runtime error
Runtime error
File size: 22,367 Bytes
820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 d6a6bab 820bb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.5
# kernelspec:
# display_name: Python 3
# name: python3
# ---
# + id="QAY_RQOLcRtA" executionInfo={"status": "ok", "timestamp": 1677945244865, "user_tz": 0, "elapsed": 19712, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="be179435-1667-40af-8a80-7bc63a472715"
MAIN = __name__ == "__main__"
if MAIN:
print('Mounting drive...')
from google.colab import drive
drive.mount('/content/drive')
# %cd /content/drive/MyDrive/Colab Notebooks/cartpole-demo
# + colab={"base_uri": "https://localhost:8080/"} id="GgSNZRJh4EjV" executionInfo={"status": "ok", "timestamp": 1677945316689, "user_tz": 0, "elapsed": 57846, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="6aeb7bf3-e186-449d-cdc4-c66f778244b2"
# !pip install einops
# !pip install wandb
# !pip install jupytext
# !pip install pygame
# !pip install torchtyping
# !pip install gradio
# !pip install huggingface_hub
# + colab={"base_uri": "https://localhost:8080/"} id="1g58HZUb8Ltl" executionInfo={"status": "ok", "timestamp": 1677945458077, "user_tz": 0, "elapsed": 16862, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="62ffc9cd-ff0b-4473-c17a-4593a14526cf"
# !git config --global credential.helper store
# !git config --global user.name "skar0"
# !git config --global user.email "oskar.hollinsworth@gmail.com"
# !huggingface-cli login
# !jupytext --to py cartpole.ipynb
# !git fetch
# # !chmod +x .git/hooks/pre-push
# !git status
# + id="dYeFdxVIWOqc" executionInfo={"status": "ok", "timestamp": 1677945546175, "user_tz": 0, "elapsed": 318, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
# + colab={"base_uri": "https://localhost:8080/"} id="5xFqBnKzVN60" executionInfo={"status": "ok", "timestamp": 1677945556589, "user_tz": 0, "elapsed": 7558, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="535e6c5e-17f6-4342-8a9d-ff54f4c82187"
# !git push
# + id="vEczQ48wC40O"
import os
import glob
import sys
import argparse
import random
import time
from distutils.util import strtobool
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch as t
from torchtyping import TensorType as TT
from typeguard import typechecked
import gym
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter
from gym.spaces import Discrete
from typing import Any, List, Optional, Union, Tuple, Iterable
from einops import rearrange
import importlib
import wandb
from typeguard import typechecked
# + id="K7T8bs1Y76ZK" executionInfo={"status": "ok", "timestamp": 1677942330521, "user_tz": 0, "elapsed": 8, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="f59ffef0-7156-4f27-d992-a392d59a1c73"
# %env "WANDB_NOTEBOOK_NAME" "cartpole.py"
# + id="Q5E93-BGRjuy"
def make_env(
env_id: str, seed: int, idx: int, capture_video: bool, run_name: str
):
"""
Return a function that returns an environment after setting up boilerplate.
"""
def thunk():
env = gym.make(env_id, new_step_api=True)
env = gym.wrappers.RecordEpisodeStatistics(env)
if capture_video:
if idx == 0:
# Video every 50 runs for env #1
env = gym.wrappers.RecordVideo(
env,
f"videos/{run_name}",
episode_trigger=lambda x : x % 50 == 0
)
obs = env.reset(seed=seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
# + id="Kf152ROwHjM_"
def test_minibatch_indexes(minibatch_indexes):
for n in range(5):
frac, minibatch_size = np.random.randint(1, 8, size=(2,))
batch_size = frac * minibatch_size
indices = minibatch_indexes(batch_size, minibatch_size)
assert any([isinstance(indices, list), isinstance(indices, np.ndarray)])
assert isinstance(indices[0], np.ndarray)
assert len(indices) == frac
np.testing.assert_equal(np.sort(np.stack(indices).flatten()), np.arange(batch_size))
# + id="mhvduVeOHkln"
def test_calc_entropy_bonus(calc_entropy_bonus):
probs = Categorical(logits=t.randn((3, 4)))
ent_coef = 0.5
expected = ent_coef * probs.entropy().mean()
actual = calc_entropy_bonus(probs, ent_coef)
t.testing.assert_close(expected, actual)
# + id="Aya60GeCGA5X"
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
t.nn.init.orthogonal_(layer.weight, std)
t.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
critic: nn.Sequential
actor: nn.Sequential
def __init__(self, envs: gym.vector.SyncVectorEnv):
super().__init__()
obs_shape = np.array(
(envs.num_envs, ) + envs.single_action_space.shape
).prod().astype(int)
self.actor = nn.Sequential(
layer_init(nn.Linear(obs_shape, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, envs.single_action_space.n), std=.01),
)
self.critic = nn.Sequential(
layer_init(nn.Linear(obs_shape, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 1), std=1),
)
# + id="6PwPZHlLGDYu"
# %%
@t.inference_mode()
def compute_advantages(
next_value: t.Tensor,
next_done: t.Tensor,
rewards: t.Tensor,
values: t.Tensor,
dones: t.Tensor,
device: t.device,
gamma: float,
gae_lambda: float,
) -> t.Tensor:
'''Compute advantages using Generalized Advantage Estimation.
next_value: shape (1, env) -
represents V(s_{t+1}) which is needed for the last advantage term
next_done: shape (env,)
rewards: shape (t, env)
values: shape (t, env)
dones: shape (t, env)
Return: shape (t, env)
'''
assert isinstance(next_value, t.Tensor)
assert isinstance(next_done, t.Tensor)
assert isinstance(rewards, t.Tensor)
assert isinstance(values, t.Tensor)
assert isinstance(dones, t.Tensor)
t_max, n_env = values.shape
next_values = t.concat((values[1:, ], next_value))
next_dones = t.concat((dones[1:, ], next_done.unsqueeze(0)))
deltas = rewards + gamma * next_values * (1.0 - next_dones) - values
adv = deltas.clone().to(device)
for to_go in range(1, t_max):
t_idx = t_max - to_go - 1
t.testing.assert_close(adv[t_idx], deltas[t_idx])
adv[t_idx] += (
gamma * gae_lambda * adv[t_idx + 1] * (1.0 - next_dones[t_idx])
)
return adv
# + id="uYSSMnF-GPvm"
# %%
@dataclass
class Minibatch:
obs: t.Tensor
logprobs: t.Tensor
actions: t.Tensor
advantages: t.Tensor
returns: t.Tensor
values: t.Tensor
def minibatch_indexes(
batch_size: int, minibatch_size: int
) -> List[np.ndarray]:
'''
Return a list of length (batch_size // minibatch_size) where
each element is an array of indexes into the batch.
Each index should appear exactly once.
'''
assert batch_size % minibatch_size == 0
n = batch_size // minibatch_size
indices = np.arange(batch_size)
np.random.shuffle(indices)
return [indices[i::n] for i in range(n)]
if MAIN:
test_minibatch_indexes(minibatch_indexes)
def make_minibatches(
obs: t.Tensor,
logprobs: t.Tensor,
actions: t.Tensor,
advantages: t.Tensor,
values: t.Tensor,
obs_shape: tuple,
action_shape: tuple,
batch_size: int,
minibatch_size: int,
) -> List[Minibatch]:
'''
Flatten the environment and steps dimension into one batch dimension,
then shuffle and split into minibatches.
'''
n_steps, n_env = values.shape
n_dim = n_steps * n_env
indexes = minibatch_indexes(batch_size=batch_size, minibatch_size=minibatch_size)
obs_flat = obs.reshape((batch_size,) + obs_shape)
act_flat = actions.reshape((batch_size,) + action_shape)
probs_flat = logprobs.reshape((batch_size,) + action_shape)
adv_flat = advantages.reshape(n_dim)
val_flat = values.reshape(n_dim)
return [
Minibatch(
obs_flat[idx], probs_flat[idx], act_flat[idx], adv_flat[idx],
adv_flat[idx] + val_flat[idx], val_flat[idx]
)
for idx in indexes
]
# + id="K7wXDJ9MGOWu"
# %%
def calc_policy_loss(
probs: Categorical, mb_action: t.Tensor, mb_advantages: t.Tensor,
mb_logprobs: t.Tensor, clip_coef: float
) -> t.Tensor:
'''
Return the policy loss, suitable for maximisation with gradient ascent.
probs:
a distribution containing the actor's unnormalized logits of
shape (minibatch, num_actions)
clip_coef: amount of clipping, denoted by epsilon in Eq 7.
normalize: if true, normalize mb_advantages to have mean 0, variance 1
'''
adv_norm = (mb_advantages - mb_advantages.mean()) / mb_advantages.std()
ratio = t.exp(probs.log_prob(mb_action)) / t.exp(mb_logprobs)
min_left = ratio * adv_norm
min_right = t.clip(ratio, 1 - clip_coef, 1 + clip_coef) * adv_norm
return t.minimum(min_left, min_right).mean()
# + id="CmyxU6JWGMsG"
# %%
def calc_value_function_loss(
critic: nn.Sequential, mb_obs: t.Tensor, mb_returns: t.Tensor, v_coef: float
) -> t.Tensor:
'''Compute the value function portion of the loss function.
Need to minimise this
v_coef:
the coefficient for the value loss, which weights its contribution to
the overall loss. Denoted by c_1 in the paper.
'''
output = critic(mb_obs)
return v_coef * (output - mb_returns).pow(2).mean() / 2
# + id="npyWs6xjGLkP"
# %%
def calc_entropy_loss(probs: Categorical, ent_coef: float):
'''Return the entropy loss term.
Need to maximise this
ent_coef:
The coefficient for the entropy loss, which weights its contribution to the overall loss.
Denoted by c_2 in the paper.
'''
return probs.entropy().mean() * ent_coef
if MAIN:
test_calc_entropy_bonus(calc_entropy_loss)
# + id="nqJeg1kZGKSG"
# %%
class PPOScheduler:
def __init__(self, optimizer: optim.Adam, initial_lr: float, end_lr: float, num_updates: int):
self.optimizer = optimizer
self.initial_lr = initial_lr
self.end_lr = end_lr
self.num_updates = num_updates
self.n_step_calls = 0
def step(self):
'''
Implement linear learning rate decay so that after num_updates calls to step,
the learning rate is end_lr.
'''
lr = (
self.initial_lr +
(self.end_lr - self.initial_lr) * self.n_step_calls / self.num_updates
)
for param in self.optimizer.param_groups:
param['lr'] = lr
self.n_step_calls += 1
def make_optimizer(
agent: Agent, num_updates: int, initial_lr: float, end_lr: float
) -> Tuple[optim.Adam, PPOScheduler]:
'''Return an appropriately configured Adam with its attached scheduler.'''
optimizer = optim.Adam(agent.parameters(), lr=initial_lr, maximize=True)
scheduler = PPOScheduler(
optimizer=optimizer, initial_lr=initial_lr, end_lr=end_lr, num_updates=num_updates
)
return optimizer, scheduler
# + id="mgZ7-wsRCxJW"
@dataclass
class PPOArgs:
exp_name: str = 'cartpole.py'
seed: int = 1
torch_deterministic: bool = True
cuda: bool = True
track: bool = True
wandb_project_name: str = "PPOCart"
wandb_entity: str = None
capture_video: bool = True
env_id: str = "CartPole-v1"
total_timesteps: int = 40_000
learning_rate: float = 0.00025
num_envs: int = 4
num_steps: int = 128
gamma: float = 0.99
gae_lambda: float = 0.95
num_minibatches: int = 4
update_epochs: int = 4
clip_coef: float = 0.2
ent_coef: float = 0.01
vf_coef: float = 0.5
max_grad_norm: float = 0.5
batch_size: int = 512
minibatch_size: int = 128
# + id="xeIu-J3ZwGyq"
def wandb_init(name: str, args: PPOArgs):
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=name,
monitor_gym=True,
save_code=True,
settings=wandb.Settings(symlink=False)
)
# + id="gMYWqhsryYHy"
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# + id="T9j_L0Wpyrgz"
@typechecked
def rollout_phase(
next_obs: t.Tensor, next_done: t.Tensor,
agent: Agent, envs: gym.vector.SyncVectorEnv,
writer: SummaryWriter, device: torch.device,
global_step: int, action_shape: Tuple,
num_envs: int, num_steps: int,
) -> Tuple[
TT['envs'],
TT['envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
]:
'''
Output:
next_obs, next_done, actions, dones, logprobs, obs, rewards, values
'''
obs = torch.zeros(
(num_steps, num_envs) +
envs.single_observation_space.shape
).to(device)
actions = torch.zeros(
(num_steps, num_envs) +
action_shape
).to(device)
logprobs = torch.zeros((num_steps, num_envs)).to(device)
rewards = torch.zeros((num_steps, num_envs)).to(device)
dones = torch.zeros((num_steps, num_envs)).to(device)
values = torch.zeros((num_steps, num_envs)).to(device)
for i in range(0, num_steps):
# Rollout phase
global_step += 1
curr_obs = next_obs
done = next_done
with t.inference_mode():
logits = agent.actor(curr_obs).detach()
q_values = agent.critic(curr_obs).detach().squeeze(-1)
prob = Categorical(logits=logits)
action = prob.sample()
logprob = prob.log_prob(action)
next_obs, reward, next_done, info = envs.step(action.numpy())
next_obs = t.tensor(next_obs, device=device)
next_done = t.tensor(next_done, device=device)
actions[i] = action
dones[i] = done.detach().clone()
logprobs[i] = logprob
obs[i] = curr_obs
rewards[i] = t.tensor(reward, device=device)
values[i] = q_values
if writer is not None and "episode" in info.keys():
for item in info['episode']:
if item is None or 'r' not in item.keys():
continue
writer.add_scalar(
"charts/episodic_return", item["r"], global_step
)
writer.add_scalar(
"charts/episodic_length", item["l"], global_step
)
if global_step % 10 != 0:
continue
print(
f"global_step={global_step}, episodic_return={item['r']}"
)
print("charts/episodic_return", item["r"], global_step)
print("charts/episodic_length", item["l"], global_step)
return (
next_obs, next_done, actions, dones, logprobs, obs, rewards, values
)
# + id="xdDhABIk5jyb"
def reset_env(envs, device):
next_obs = torch.Tensor(envs.reset()).to(device)
next_done = torch.zeros(envs.num_envs).to(device)
return next_obs, next_done
# + id="5CoMpUVU7rFT"
def get_action_shape(envs: gym.vector.SyncVectorEnv):
action_shape = envs.single_action_space.shape
assert action_shape is not None
assert isinstance(
envs.single_action_space, Discrete
), "only discrete action space is supported"
return action_shape
# + id="FHmn5kSUGFFu"
# %%
def train_ppo(args: PPOArgs):
t0 = int(time.time())
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{t0}"
if args.track:
wandb_init(run_name, args)
log_dir = wandb.run.dir
writer = SummaryWriter(log_dir)
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % "\n".join([f"|{key}|{value}|"
for (key, value) in vars(args).items()]),
)
set_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device(
"cuda" if torch.cuda.is_available() and args.cuda else "cpu"
)
envs = gym.vector.SyncVectorEnv([
make_env(args.env_id, args.seed + i, i, args.capture_video, run_name)
for i in range(args.num_envs)
])
agent = Agent(envs).to(device)
num_updates = args.total_timesteps // args.batch_size
(optimizer, scheduler) = make_optimizer(
agent, num_updates, args.learning_rate, 0.0
)
global_step = 0
old_approx_kl = 0.0
approx_kl = 0.0
value_loss = t.tensor(0.0)
policy_loss = t.tensor(0.0)
entropy_loss = t.tensor(0.0)
clipfracs = []
info = []
action_shape = get_action_shape(envs)
next_obs, next_done = reset_env(envs, device)
start_time = time.time()
for _ in range(num_updates):
rp = rollout_phase(
next_obs, next_done, agent, envs, writer, device, global_step,
action_shape, args.num_envs, args.num_steps,
)
next_obs, next_done, actions, dones, logprobs, obs, rewards, values = rp
with t.inference_mode():
next_value = rearrange(agent.critic(next_obs), "env 1 -> 1 env")
advantages = compute_advantages(
next_value, next_done, rewards, values, dones, device, args.gamma,
args.gae_lambda
)
clipfracs.clear()
mb: Minibatch
for _ in range(args.update_epochs):
minibatches = make_minibatches(
obs,
logprobs,
actions,
advantages,
values,
envs.single_observation_space.shape,
action_shape,
args.batch_size,
args.minibatch_size,
)
for mb in minibatches:
probs = Categorical(logits=agent.actor(mb.obs))
value_loss = calc_value_function_loss(
agent.critic, mb.obs, mb.returns, args.vf_coef
)
policy_loss = calc_policy_loss(
probs, mb.actions, mb.advantages, mb.logprobs,
args.clip_coef
)
entropy_loss = calc_entropy_loss(probs, args.ent_coef)
loss = policy_loss + entropy_loss - value_loss
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
(y_pred, y_true) = (mb.values.cpu().numpy(), mb.returns.cpu().numpy())
var_y = np.var(y_true)
explained_var = (
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
)
with torch.no_grad():
newlogprob: t.Tensor = probs.log_prob(mb.actions)
logratio = newlogprob - mb.logprobs
ratio = logratio.exp()
old_approx_kl = (-logratio).mean().item()
approx_kl = (ratio - 1 - logratio).mean().item()
clipfracs += [
((ratio - 1.0).abs() > args.clip_coef).float().mean().item()
]
writer.add_scalar(
"charts/learning_rate", optimizer.param_groups[0]["lr"],
global_step
)
writer.add_scalar("losses/value_loss", value_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", policy_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl, global_step)
writer.add_scalar("losses/approx_kl", approx_kl, global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar(
"losses/explained_variance", explained_var, global_step
)
writer.add_scalar(
"charts/SPS",
int(global_step / (time.time() - start_time)),
global_step
)
if global_step % 1000 == 0:
print(
"steps per second (SPS):",
int(global_step / (time.time() - start_time))
)
print("losses/value_loss", value_loss.item())
print("losses/policy_loss", policy_loss.item())
print("losses/entropy", entropy_loss.item())
print(f'... training complete after {global_step} steps')
envs.close()
writer.close()
if args.track:
model_path = f'{wandb.run.dir}/model_state_dict.pt'
print(f'Saving model to {model_path}')
t.save(agent.state_dict(), model_path)
wandb.finish()
print('...wandb finished.')
# + id="-oZHTffJZP17" executionInfo={"status": "ok", "timestamp": 1677942433344, "user_tz": 0, "elapsed": 66678, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": ["c966d31ee30d43e0a8cc269a8a22b717", "294a378e56c44e4c9a3c58e8bf5b5f62", "473cc94ea22746f3a51e2186d973f741", "e3bb8c5a2c3841c2b33a7b8afb66a88f", "6133d8cbba964b7e8755e1c0691caf27", "1bf18f5fae9c4f58b2e360bc35251a94", "e820d38826494e248ca8974cccc1f338", "05eebe964b4b4c93b4aa0eac9ff865cb"]} outputId="0cfbb11c-831a-4622-8c01-afebae209d04"
# #%%wandb
if MAIN:
args = PPOArgs()
train_ppo(args)
# + colab={"base_uri": "https://localhost:8080/"} id="xJW6KL7QIj4s" executionInfo={"status": "ok", "timestamp": 1677942639015, "user_tz": 0, "elapsed": 105286, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="7c529849-6d46-4a6a-def5-e1c0ef652c64"
# !python demo.py
# + id="P7ZfUlAqImIr"
# !pip freeze > requirements.txt
# + id="x_bhyL3GLnhr"
|