Spaces:
Paused
Paused
File size: 1,289 Bytes
27d5bfa ba7e4e4 27d5bfa aa1ce11 ba7e4e4 3c55e75 9affd7f 3c55e75 b1d4a37 3c55e75 27d5bfa c97e8d2 27d5bfa d76a641 b57fb6b 6a7ba66 27d5bfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_name = "microsoft/phi-2"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
base_model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="cuda:0",
trust_remote_code=True,
#token=True,
)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
def generate_answer(question):
#inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = tokenizer(question, return_tensors="pt")
outputs = model.generate(**inputs, max_length=250, num_return_sequences=1, do_sample=True)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
iface = gr.Interface(
fn=generate_answer,
inputs="text",
outputs="text",
title="The Art of Prompt Engineering",
description="Definiere deine Prompt, am besten auf Deutsch",
)
iface.launch(share=True) # Deploy the interface |