File size: 1,506 Bytes
63f55d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
import gradio as gr

model_name = "checkpoint-1700"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def answer_question(question, context):
    if not question.strip() or not context.strip():
        return "Soru ve metin boş olamaz!"

    inputs = tokenizer(question, context, return_tensors="pt", truncation=True)
    inputs = {k: v.to(device) for k, v in inputs.items()}

    with torch.no_grad():
        outputs = model(**inputs)

    answer_start = torch.argmax(outputs.start_logits)
    answer_end = torch.argmax(outputs.end_logits) + 1

    input_ids = inputs["input_ids"][0]
    answer = tokenizer.convert_tokens_to_string(
        tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end].cpu())
    )

    return answer.strip()

demo = gr.Interface(
    fn=answer_question,
    inputs=[
        gr.Textbox(label="Soru", placeholder="Örn: Türkiye'nin başkenti neresidir ?"),
        gr.Textbox(
            label="Metin", 
            placeholder="Metni buraya girin...",
            lines=10
        )
    ],
    outputs=gr.Textbox(label="Cevap"),
    title="BERT Soru-Cevap Sistemi",
    description="Metin ve sorunuzu girin ve BERT modeli cevabı metin içerisinden çıkarsın.",
    theme="default",
)

if __name__ == "__main__":
    demo.launch()