Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,213 Bytes
bfcf15b 953db0f c33db6f 397a6e0 747ae22 0b0fbff c7b7c38 061c485 c7b7c38 bc77755 fc26e6a bc77755 1be6924 708cb85 54ffbc8 708cb85 4473d1b ff5529a 3e58663 e81e959 00fc678 b12f66c bfcf15b 3e58663 d8cca02 1b41e67 f786d0a 96cefb1 6035558 96cefb1 d5c031d 7b20888 061c485 5fd6610 061c485 7ea4256 891de3b 5fd6610 9354b89 061c485 5fd6610 9354b89 061c485 7ac6b8c c510313 48de0d0 3ba701f 4001908 3ba701f 7ac6b8c c510313 7ac6b8c c510313 7ac6b8c c510313 31abf6a 7ac6b8c 061c485 7ac6b8c 7b20888 e483761 c7b7c38 31a6cfe 891de3b 747ae22 ec71e7b ddeae44 ec71e7b e442097 ec71e7b 747ae22 3927601 c7b7c38 c9c7d64 0a0fee8 c9c7d64 c7b7c38 216cc2d 59d9fe4 c064b06 31a6cfe c7b7c38 747ae22 48de0d0 ddeae44 b22cdd2 ddeae44 b22cdd2 0494df2 ddeae44 747ae22 6e4453c 747ae22 ddeae44 747ae22 521caba c064b06 89f7c7f c064b06 521caba c064b06 3927601 d6eb204 3927601 609ca1e 3927601 609ca1e 3927601 609ca1e 3927601 6ddc519 3927601 7b20888 1b41e67 c7b7c38 72899e4 b4e0584 1b41e67 c7b7c38 1b41e67 31a6cfe c7b7c38 1b41e67 3927601 937a2b5 3927601 7a7e782 c1b7442 297f270 7ac6b8c c510313 7ac6b8c c510313 2c918b3 c510313 75871e4 7ac6b8c 6a9a9fa 1b41e67 f5ae7ba 6ac0b94 f5ae7ba d319067 6ac0b94 d361bef 7ff8c52 ca29048 04f82a3 3927601 5fd6610 297f270 dc3e688 5f33f15 c1b7442 d361bef 73979a5 1df1236 73979a5 d89f61c e483761 73979a5 285f9db 73979a5 36082ac 4a242d2 d89f61c 2bff5f5 e73b996 73979a5 c5b9d01 1b41e67 a16fa02 475d498 a16fa02 fb3a853 50af284 fb3a853 a16fa02 6d1d144 a16fa02 6d1d144 a16fa02 475d498 a16fa02 d89f61c e8f234a 475d498 67f3e69 e8f234a a16fa02 475d498 a16fa02 475d498 a16fa02 358e1af daba1ff 358e1af 56b2ef3 a16fa02 ab1e59e a16fa02 710bb7d ab1e59e a16fa02 673e356 0a714b9 35d24e2 673e356 35d24e2 673e356 35d24e2 673e356 35d24e2 52f444b fe32861 55c8705 3e58663 4a18925 13c3232 1c7ad57 b352f9b d7f078e a6aaa13 6856da6 661ed31 881930b 661ed31 a6aaa13 79c0151 757776c 8ecdbc8 757776c 8ecdbc8 6335c21 8ecdbc8 6335c21 86238bc 19dab0b 0e78262 654a528 3ab3f60 1c7ad57 6335c21 8ecdbc8 a6aaa13 d7f078e 6e18f3b 842b426 6e18f3b 79c0151 6e18f3b c510313 34441c6 3a9a03f 44a9e44 3a9a03f 6a2cf84 7df4bba 6a2cf84 c510313 7b20888 fe32861 bc77755 8ecdbc8 4a9f8e4 985eae2 a3468c5 985eae2 47b9453 cf5763d 2ed7a2a fa837b5 cf5763d fa837b5 4a9f8e4 2ed7a2a fa837b5 cf5763d fa837b5 2ed7a2a fa837b5 6335c21 13846d5 6335c21 47b9453 6335c21 47b9453 6335c21 e2dd330 7df4bba 4ae9b2a 36082ac 4ae9b2a d6c4df5 1864ada b9d72c3 4ae9b2a 7df4bba 36082ac 7df4bba 13846d5 7df4bba d7f078e 1b41e67 6cf5c21 ee0592a 1b41e67 f89a150 216cc2d c93a6a0 ff8a974 1b41e67 31c2d5c 1c6b89c 216cc2d 1c6b89c 31c2d5c 7b8adee 76772f3 c93a6a0 1b41e67 c5b9d01 1b41e67 ff8a974 a492ef8 1b41e67 0594bef ddeae44 d8cca02 ff8a974 d8cca02 1b41e67 6840fb0 0534456 1b41e67 76d3c68 686fa94 1b41e67 ddeae44 a492ef8 d7e453e 1b41e67 b63cdd8 d65d12c f2e5e11 d65d12c 937a2b5 d65d12c 216cc2d d1c2c47 1b41e67 f7202eb a78471c 1b41e67 a78471c b63cdd8 f2e5e11 d7e453e b63cdd8 f2e5e11 a78471c d7e453e 1b41e67 b4c6aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
import gradio as gr
import spaces
import tifffile as tiff
import zarr
import numpy as np
import os
import cv2
from PIL import Image
from skimage.feature import peak_local_max
import scipy as sc
import huggingface_hub
# Available backend options are: "jax", "torch", "tensorflow".
os.environ["KERAS_BACKEND"] = "torch"
import keras
try:
from keras.src import api_export
api_export.REGISTERED_NAMES_TO_OBJS["keras.models.functional.Functional"] = keras.src.models.functional.Functional
api_export.REGISTERED_NAMES_TO_OBJS["keras.ops.numpy.Concatenate"] = keras.src.ops.numpy.Concatenate
api_export.REGISTERED_NAMES_TO_OBJS["keras.ops.numpy.Flip"] = keras.src.ops.numpy.Flip
api_export.REGISTERED_NAMES_TO_OBJS["keras.ops.numpy.GetItem"] = keras.src.ops.numpy.GetItem
api_export.REGISTERED_NAMES_TO_OBJS["keras.ops.numpy.Stack"] = keras.src.ops.numpy.Stack
api_export.REGISTERED_NAMES_TO_OBJS["keras.ops.numpy.Absolute"] = keras.src.ops.numpy.Absolute
api_export.REGISTERED_NAMES_TO_OBJS["keras.ops.nn.Conv"] = keras.src.ops.nn.Conv
api_export.REGISTERED_NAMES_TO_OBJS["keras.backend.torch.optimizers.torch_adam.Adam"] = keras.src.optimizers.Adam
except ModuleNotFoundError:
print('pleasssse')
pass # Not necessary for this version of Keras
import keras.saving
model_adresses = {"Intestinal organoids (0.32x0.32x2.0 um)": 'sjtans/organoids_pytorch',
"c. Elegans embryo (0.1x0.1x1.0 um)": 'sjtans/elegans_pytorch'}
fp0 = np.zeros((96, 128), dtype = np.uint8)
fp1 = np.ones((96, 128), dtype = np.uint8)*200
from huggingface_hub import hf_hub_download
def download_model(model):
return hf_hub_download(repo_id=model, filename="model.keras")
# generic image reader
def imread(filepath):
print('imread')
fpath, fext = os.path.splitext(filepath)
if fext in ['.tiff', '.tif']:
print('imread_tiff')
img = tiff.imread(filepath)
else:
print('imread_cv2')
img = cv2.imread(filepath)
return img
def check_dims(filepath):
tif = tiff.TiffFile(filepath)
store = tif.aszarr()
img = zarr.open(store, mode='r', chunks=None)
store.close()
if img.ndim==3:
return img.shape[0], None
if img.ndim==4:
return img.shape[0], img.shape[1]
if img.ndim==5:
return img.shape[1], img.shape[2]
else:
raise ValueError("TIF has wrong dimensions")
# tiff volume to png slice
def tif_view(filepath, z, c=0, show_depth=True):
fpath, fext = os.path.splitext(filepath)
print('tif'+filepath)
print('tif'+ fext)
if fext in ['.tiff', '.tif']:
img = get_slice(filepath, z, c = c)
# get slice above and below
if show_depth:
img = np.stack([img, get_slice(filepath, z-1, c = c), get_slice(filepath, z+1, c = c)],axis=-1)
else:
img = np.stack([img]*3,axis=-1)
Ly, Lx, nchan = img.shape
imgi = np.zeros((Ly, Lx, 3))
nn = np.minimum(3, img.shape[-1])
imgi[:,:,:nn] = img[:,:,:nn]
imgi = imgi - np.min(imgi)
imgi = imgi/(np.max(imgi)+0.0000001)
imgi = (255. * imgi)
filepath = fpath+'z'+str(z)+'c'+str(c)+'.png'
tiff.imwrite(filepath, imgi.astype('uint8'))
else:
raise ValueError("not a TIF/TIFF")
print('tif'+filepath)
return filepath
def get_slice(filepath, z, c=0):
tif = tiff.TiffFile(filepath)
store = tif.aszarr()
img = zarr.open(store, mode='r', chunks=None)
store.close()
print(z)
if img.ndim==3:
if (z>=img.shape[0]) | (z<0):
print('z to big')
return np.zeros((img.shape[1], img.shape[2]))
if img.ndim==4:
if (z>=img.shape[0]) | (z<0):
return np.zeros((img.shape[2], img.shape[3]))
if img.ndim==5:
if (z>=img.shape[1]) | (z<0):
return np.zeros((img.shape[3], img.shape[4]))
if img.ndim==2:
raise ValueError("TIF has only two dimensions")
if img.ndim==3:
img = img[z,:,:]
if img.ndim==4:
img = img[z,c,:,:]
# select first timepoint
if img.ndim==5:
img = img[0,z,c,:,:]
print(img.shape)
if img.ndim>5:
raise ValueError("TIF cannot have more than five dimensions")
return img
def get_volume(filepath, c=0):
img = tiff.imread(filepath)
print(img.shape)
if img.ndim==2:
raise ValueError("TIF has only two dimensions")
if img.ndim==4:
img = img[:,c,:,:]
# select first timepoint
if img.ndim==5:
img = img[0,:,c,:,:]
print(img.shape)
if img.ndim>5:
raise ValueError("TIF cannot have more than five dimensions")
return img
def tif_view_3D(filepath, z):
fpath, fext = os.path.splitext(filepath)
print('tif'+filepath)
print('tif'+ fext)
# assumes (t,)z,(c,)y,x for now
if fext in ['.tiff', '.tif']:
img = tiff.imread(filepath)
print(img.shape)
if img.ndim==2:
raise ValueError("TIF has only two dimensions")
# select first timepoint
if img.ndim==5:
img = img[0,:,:,:,:]
print(img.shape)
#distinguishes between z,y,x and z,c,y,x
if img.ndim==4:
img = img[z,:,:,:]
print(img.shape)
elif img.ndim==3:
img = img[z,:,:]
print(img.shape)
img = np.tile(img[:,:,np.newaxis], [1,1,3])
else:
raise ValueError("TIF cannot have more than five dimensions")
imin = np.argmin(img.shape)
img = np.moveaxis(img, imin, 2)
print(img.shape)
Ly, Lx, nchan = img.shape
imgi = np.zeros((Ly, Lx, 3))
nn = np.minimum(3, img.shape[-1])
imgi[:,:,:nn] = img[:,:,:nn]
imgi = imgi/(np.max(imgi)+0.0000001)
imgi = (255. * imgi)
filepath = fpath+'.png'
tiff.imwrite(filepath, imgi.astype('uint8'))
else:
raise ValueError("not a TIF/TIFF")
print('tif'+filepath)
return filepath
# function to change image appearance
def norm_path(filepath):
img = imread(filepath)
img = img/(np.max(img)+0.0000001)
#img = np.clip(img, 0, 1)
fpath, fext = os.path.splitext(filepath)
filepath = fpath +'.png'
pil_image = Image.fromarray((255. * img).astype(np.uint8))
pil_image.save(filepath)
#imsave(filepath, pil_image)
print('norm'+filepath)
return filepath
def update_image(filepath, z):
print('update_img')
#for f in filepath:
#f = tif_view(f, z)
filepath_show = tif_view(filepath[-1], z)
filepath_show = norm_path(filepath_show)
print(filepath_show)
print(filepath)
max_z, num_c = check_dims(filepath[-1])
z = min(z, max_z)
if num_c is None:
visible_c = False
num_c = 10
else:
visible_c = True
print(visible_c)
return (filepath_show, [((5, 5, 10, 10), 'nothing')]), filepath, (fp0, [((5, 5, 10, 10), 'nothing')]), None, None, gr.Slider(0, max_z-1, value = z, visible=True), gr.Slider(0, num_c-1, visible=visible_c)
def update_with_example(filepath):
print('update_btn')
print(filepath)
fpath, fext = os.path.splitext(filepath)
filepath = fpath+ '.tif'
filepath = filepath.split('/')[-1]
filepath = "./gradio_examples/"+filepath
return update_image([filepath], z=10)
def example(filepath):
print('update_btn')
print(filepath)
filepath_show = filepath
fpath, fext = os.path.splitext(filepath)
filepath = fpath+ '.tif'
filepath = filepath.split('/')[-1]
filepath = "./gradio_examples/"+filepath
print(filepath)
return(filepath_show)
def update_button(filepath, z):
print('update_btn')
print(filepath)
filepath_show = tif_view(filepath, z)
filepath_show = norm_path(filepath_show)
print(filepath_show)
return (filepath_show, [((5, 5, 10, 10), 'nothing')]), [filepath], (fp0, [((5, 5, 10, 10), 'nothing')], z)
def update(filepath, filepath_result, filepath_coordinates, z, c):
print('update_img')
filepath_show = tif_view(filepath[-1], z, c=c)
filepath_show = norm_path(filepath_show)
if isinstance(filepath_result, str):
filepath_result_show = tif_view(filepath_result, z, show_depth=False)
filepath_result_show = norm_path(filepath_result_show)
else:
filepath_result_show = fp0
print(filepath_show)
print(filepath)
if filepath_coordinates is None:
display_boxes = []
else:
print(imread(filepath_show).shape)
display_boxes = filter_coordinates_alt(filepath_coordinates, z, imread(filepath_show).shape[0:2])
return (filepath_show, display_boxes), (filepath_result_show, display_boxes)
def filter_coordinates_alt(filepath_coordinates, z, image_shape=(512, 512)):
depth = 3
coordinates = np.loadtxt(filepath_coordinates, delimiter=",")
coordinates = coordinates.astype('int')
print(coordinates)
print(np.abs(coordinates[:,0]-z))
coordinates = coordinates[np.abs(coordinates[:,0]-z)<depth, :]
print(coordinates)
#xy_coordinates = coordinates[:, (2,1)]
#rel_z = np.abs(coordinates[:, 0]-z)
#rel_z = rel_z[:, np.newaxis]
boxes = np.zeros(image_shape)
x_coord = tuple(coordinates[:,1])
y_coord = tuple(coordinates[:,2])
sizes = tuple(4-np.abs(coordinates[:,0]-z))
print(sizes)
for x, y, size in zip(x_coord, y_coord, sizes):
boxes = draw_box(boxes, x, y, size)
return [(boxes,'nothing')]
def draw_box(array, x, y, size):
x0 = max(x-size, 0)
y0 = max(y-size, 0)
x1 = min(x+size+1, array.shape[0]-1)
y1 = min(y+size+1, array.shape[1]-1)
array[x0:x1, y0:y1] = 1
return array
def add_boxes_norm_path(filepath, boxes):
img = imread(filepath)
img = img/(np.max(img)+0.0000001)
#boxes = np.stack([boxes, np.zeros(boxes.shape),np.zeros(boxes.shape)], axis=-1).astype('int')
boxes = np.stack([boxes]*3, axis=-1).astype('int')
print(img.shape)
print(np.sum(boxes))
print(boxes.shape)
img = np.where(boxes>0, boxes, img)
fpath, fext = os.path.splitext(filepath)
filepath = fpath + '_with_boxes'+'.png'
pil_image = Image.fromarray((255. * img).astype(np.uint8))
pil_image.save(filepath)
#imsave(filepath, pil_image)
print('norm_with_box'+filepath)
return filepath
def loss(y_true, y_pred):
# Calculate weighted mean square error
return None
def position_precision(y_true, y_pred):
return loss(y_true, y_pred)
def position_recall(y_true, y_pred):
return loss(y_true, y_pred)
def overcount(y_true, y_pred):
return loss(y_true, y_pred)
@spaces.GPU(duration=60)
def run_model_gpu60(model, tile):
tensor = keras.ops.convert_to_tensor(tile)
model = keras.saving.load_model(model, custom_objects={'loss': loss,
'position_precision': position_precision,
'position_recall': position_recall,
'overcount': overcount})
result = model(tensor).cpu().detach().numpy()
return result
def detect_cells(filepath, c, model, rescale_z, rescale_xy, progress=gr.Progress()):
model = download_model(model_adresses[model])
#model = tf.keras.models.load_model(model_adresses[model], compile=False)
# model = keras.saving.load_model("hf://sjtans/OrganoidTracker2_pytorch", compile=False)
# model = keras.saving.load_model(model, compile=False)
xy_tile =32
img = get_volume(filepath[-1], c = c)
original_shape = img.shape
img = sc.ndimage.zoom(img, (rescale_z, rescale_xy, rescale_xy))
background = np.quantile(img, 0.75)
img = np.maximum(img, background)-background
img = img/np.max(img)
img_padded= pad(img)
print(img_padded.shape)
tiles = split_z(img_padded)
results = []
print(tiles)
for tile in tiles:
tile = np.tile(tile[:,:,:,np.newaxis], [1,1,2])
tile= tile[np.newaxis,:,:,:,:]
#result = model(tensor).numpy()
result = run_model_gpu60(model, tile)
# remove buffer
result = result[0, :, xy_tile//2 : -xy_tile//2, xy_tile//2 : -xy_tile//2, 0]
results.append(result)
result = reconstruct_z(results)
print(result.shape)
result = sc.ndimage.zoom(result, (1/rescale_z, 1/rescale_xy, 1/rescale_xy))
result = result[0:original_shape[0],0:original_shape[1], 0:original_shape[2]]
print(result.shape)
print(filepath)
fpath, fext = os.path.splitext(filepath[-1])
filepath_result = fpath+'result'+'.tiff'
tiff.imwrite(filepath_result, result)
# filepath_result_show = tif_view(filepath_result, z, show_depth=False)
#filepath_result_show = norm_path(filepath_result_show)
result = result/np.max(result)
#coordinates = peak_local_max(result, min_distance=2, threshold_abs=0.2, exclude_border=False)
coordinates = peak_local_max(result, min_distance=2, footprint=np.ones((5//rescale_z, 13//rescale_xy, 13//rescale_xy)), threshold_abs=0.2, exclude_border=False)
print(coordinates)
filepath_coordinates = fpath+'coordinates'+'.csv'
np.savetxt(filepath_coordinates, coordinates, delimiter=",")
#display_boxes = filter_coordinates(filepath_coordinates, z)
return filepath_result, filepath_coordinates, (fp0, [((5, 5, 10, 10), 'nothing')])#, (filepath_result_show, display_boxes)
def pad(img, z_tile = 32, z_buffer=2, xy_tile = 32):
if img.shape[0]<z_tile:
pad_z = z_tile - img.shape[0]
elif np.mod(img.shape[0], z_tile)>0:
pad_z = z_tile-np.mod(img.shape[0], z_tile-z_buffer)
else:
pad_z = 0
if np.mod(img.shape[1], xy_tile)>0:
pad_y = xy_tile-np.mod(img.shape[1], xy_tile)
else:
pad_y = 0
if np.mod(img.shape[2], xy_tile)>0:
pad_x = xy_tile-np.mod(img.shape[2], xy_tile)
else:
pad_x = 0
return np.pad(img, ((0, pad_z), ( xy_tile//2 , pad_y + xy_tile//2 ), ( xy_tile//2 , pad_x+ xy_tile//2 )))
def split_z(img, z_tile=32, z_buffer=2):
if img.shape[0]==32:
return([img])
tiles = []
height = 0
while height<(img.shape[0]-z_buffer):
tiles.append(img[height:(height+z_tile), :, :])
height = height+z_tile-z_buffer
print(height)
return tiles
def reconstruct_z(tiles, z_tile=32, z_buffer=2):
if len(tiles)==1:
return tiles[0]
tiles = [tile[0:(z_tile-z_buffer), :, :] for tile in tiles]
return np.concatenate(tiles, axis = 0)
def filter_coordinates(filepath_coordinates, z):
coordinates = np.loadtxt(filepath_coordinates, delimiter=",")
print(coordinates)
coordinates = coordinates[np.abs(coordinates[:,0]-z)<3, :]
print(coordinates)
xy_coordinates = coordinates[:, (2,1)]
rel_z = np.abs(coordinates[:, 0]-z)
rel_z = rel_z[:, np.newaxis]
print(rel_z)
boxes = np.concatenate((xy_coordinates-4+rel_z, xy_coordinates+4-rel_z), axis=1).astype('uint32')
print(boxes)
boxes = [(tuple(box.tolist()),'nothing') for box in boxes]
print(boxes)
return boxes
with gr.Blocks(title = "Hello",
css=""".gradio-container {background:green;}
#examples { background:green;}""") as demo:
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:25pt; font-weight:bold; text-align:center; color:white;">OrganoidTracker 2.0 for 3D cell tracking
<a style="color:#cfe7fe; font-size:14pt;" href="https://www.biorxiv.org/content/10.1101/2024.10.11.617799v1" target="_blank">[paper]</a>
<a style="color:#cfe7fe; font-size:14pt;" href="https://organoidtracker.org" target="_blank">[website]</a>
<a style="color:#cfe7fe; font-size:14pt;" href="https://jvzonlab.github.io/OrganoidTracker/index.html" target="_blank">[github]</a>
</div>""")
gr.HTML("""<h4 style="color:white;"> What is this?:<p> </h4>
<ul>
<li style="color:white;">Test the performance of our pre-trained networks on your data.
<li style="color:white;">We implement only the initial cell detection step, but this is a good performance indicator for the other steps.
<li style="color:white;">Does not work? OrganoidTracker 2.0 allows for the easy creation of ground truth datasets and training of new neural networks.
<ul>
""")
#filepath = ""
with gr.Row():
with gr.Column(scale=2):
# <a style="color:white; font-size:14pt;" href="https://www.youtube.com/watch?v=KIdYXgQemcI" target="_blank">[talk]</a>
#input_image = gr.Image(label = "Input", type = "filepath")
input_image = gr.AnnotatedImage(label = "Input", show_legend=False, color_map = {'nothing': '#FFFF00'})
gr.HTML("""<h4 style="color:white;">You may need to login/refresh for 5 minutes of free GPU compute per day. </h4>""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
depth = gr.Slider(0, 100, step=1, label = 'z-depth', value = 10, visible=False)
channel = gr.Slider(0, 100, label = 'channel', value = 0, visible=False)
up_btn = gr.UploadButton("Upload image volume (.tif/.tiff)", visible=True, file_count = "multiple")
#gr.HTML("""<h4 style="color:white;"> Note2: Only the first image of a tif will display the segmentations, but you can download segmentations for all planes. </h4>""")
with gr.Column(scale=1):
model = gr.Dropdown(
model_adresses.keys(), label="Detection model (with resolutions)", info="Will add more models later!"
)
with gr.Row():
rescale_xy = gr.Slider(0.2, 2, step=0.1, label = 'resize xy', value = 1)
rescale_z = gr.Slider(0.2, 2, step=0.1,label = 'resize z', value = 1)
send_btn = gr.Button("Run cell detection")
with gr.Column(scale=2):
#
#output_image = gr.Image(label = "Output", type = "filepath")
output_image = gr.AnnotatedImage(label = "Output", show_legend=False, color_map = {'nothing': '#FFFF00'})
down_btn = gr.DownloadButton("Download distance map (.tif)", visible=True)
down_btn2 = gr.DownloadButton("Download cell detections (.csv)", visible=True)
#sample_list = []
#for j in range(23):
# sample_list.append("samples/img%0.2d.png"%j)
gr.HTML("""<h4 style="color:white;"> Click on an example to try it:
</h4>""")
sample_list = os.listdir("./gradio_examples/jpegs")
#sample_list = [ ("./gradio_examples/jpegs/"+sample, [((5, 5, 10, 10), 'nothing')]) for sample in sample_list]
print(sample_list)
sample_list = [ "./gradio_examples/jpegs/"+sample for sample in sample_list]
#gr.Examples(sample_list, fn = update_with_example, inputs=input_image, outputs = [input_image, up_btn, output_image], examples_per_page=50, label = "Click on an example to try it")
example_image = gr.Image(visible=False, type='filepath')
gr.Examples(sample_list, fn= update_with_example, inputs=example_image, outputs=[input_image, up_btn, output_image, down_btn, down_btn2, depth, channel], examples_per_page=5, label=' ',
cache_examples=False, run_on_click=True, elem_id='examples')
#gr.Examples(sample_list, fn= example, inputs=example_image, outputs=[example_image], examples_per_page=5, label = "Click on an example to try it")
#input_image.upload(update_button, [input_image, depth], [input_image, up_btn, output_image])
up_btn.upload(update_image, [up_btn, depth], [input_image, up_btn, output_image, down_btn, down_btn2, depth, channel])
depth.change(update, [up_btn, down_btn, down_btn2, depth, channel], [input_image, output_image])
channel.change(update, [up_btn, down_btn, down_btn2, depth, channel], [input_image, output_image])
#depth.change(update_depth, [up_btn, depth], depth)
# Prediction
send_btn.click(detect_cells, [up_btn, channel, model, rescale_z, rescale_xy], [ down_btn, down_btn2, output_image]).then(update, [up_btn, down_btn, down_btn2, depth, channel], [input_image, output_image])# flows, down_btn, down_btn2])
#down_btn.click(download_function, None, [down_btn, down_btn2])
gr.HTML("""<h4 style="color:white;"> Notes:<br> </h4>
<li style="color:white;">You can load and process 3D tifs in the following dimensions: (T),Z,(C),Y,X. We automatically pick the first timepoint.
<li style="color:white;">Without GPU access, cell detection might take ~30 seconds.
<li style="color:white;">Locally OrganoidTracker wil run faster: ~2 seconds per frame on a dedicated GPU, ~10 seconds on a CPU.
""")
gr.HTML("""<h4 style="color:white;"> Caveats:<br> </h4>
<li style="color:white;">For this demo, an agressive background subtraction step is implemented before prediction, which we find benefits most usecases. For transperency, users have to preprocess the data themselves in OrganoidTracker 2.0.
<li style="color:white;">Because of incompatibilities between TensorFlow and HuggingFace the models here are trained with the upcoming PyTorch version of OrganoidTracker (currently in beta). There might be performance differences when using the TensorFlow-versions presented in our paper.
""")
gr.HTML("""<h4 style="color:white;"> References:<br> </h4>
<li style="color:white;">The blastocyst sample data is taken from the BlastoSPIM dataset (Nunley et al., Development, 2024):
<a style="color:#cfe7fe" href="https://blastospim.flatironinstitute.org/html/index1.html" target="_blank">[website]</a>,
<a style="color:#cfe7fe" href=https://journals.biologists.com/dev/article/151/21/dev202817/362603/Nuclear-instance-segmentation-and-tracking-for target="_blank">[paper]</a>
<li style="color:white;">The c Elegans sample data is taken from the Cell Tracking Challenge (Murray et al., Nature Methods, 2008):
<a style="color:#cfe7fe" href="https://celltrackingchallenge.net/3d-datasets/" target="_blank">[website]</a>,
<a style="color:#cfe7fe" href=https://www.nature.com/articles/nmeth.1228 target="_blank">[paper]</a>
""")
demo.queue().launch()
|