Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,252 Bytes
bfcf15b 397a6e0 0b0fbff c7b7c38 061c485 c7b7c38 f786d0a bc77755 bfcf15b d8cca02 1b41e67 f786d0a 7b20888 061c485 5fd6610 061c485 7ea4256 891de3b 5fd6610 9354b89 061c485 5fd6610 9354b89 061c485 7b20888 ec71e7b c7b7c38 31a6cfe 891de3b a72f193 652ad4e e9da226 c7b7c38 c1b7442 c7b7c38 755678e c7b7c38 0c79f97 c7b7c38 937a2b5 ec71e7b 3927601 c7b7c38 c9c7d64 c7b7c38 0f9a2e9 59d9fe4 31a6cfe c7b7c38 3927601 d6eb204 3927601 609ca1e 3927601 609ca1e 3927601 609ca1e 3927601 6ddc519 3927601 7b20888 1b41e67 c7b7c38 72899e4 b4e0584 1b41e67 c7b7c38 1b41e67 31a6cfe c7b7c38 1b41e67 3927601 937a2b5 3927601 7a7e782 c1b7442 297f270 c5b9d01 1b41e67 f5ae7ba 6ac0b94 f5ae7ba 6ac0b94 f5ae7ba 7ff8c52 04f82a3 3927601 5fd6610 297f270 dc3e688 5f33f15 c1b7442 c5b9d01 73979a5 36082ac 73979a5 285f9db 73979a5 36082ac 4a242d2 73979a5 c5b9d01 1b41e67 6e18f3b c988e88 79c0151 842b426 d7f078e 79c0151 d7f078e fcbbd24 79c0151 6335c21 4a9f8e4 6335c21 d7f078e 6e18f3b 842b426 6e18f3b 79c0151 6e18f3b 285f9db 046a6e4 bc77755 6a2cf84 7df4bba 6a2cf84 7b20888 7df4bba bc77755 4a9f8e4 6335c21 4a9f8e4 6335c21 13846d5 6335c21 7df4bba 4ae9b2a 36082ac 4ae9b2a d6c4df5 1864ada b9d72c3 4ae9b2a 7df4bba 36082ac 7df4bba 13846d5 7df4bba d7f078e 1b41e67 c5b9d01 1b41e67 297f270 609ca1e d8cca02 1b41e67 76d3c68 686fa94 1b41e67 04f82a3 7d7b9e1 8604ab8 6ac0b94 04f82a3 1b41e67 3521162 f5ae7ba 04f82a3 c5b9d01 73979a5 36082ac 937a2b5 0625694 714a351 1b41e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import gradio as gr
import tifffile as tiff
import numpy as np
import os
import cv2
from PIL import Image
import tensorflow as tf
from skimage.feature import peak_local_max
fp0 = np.zeros((96, 128), dtype = np.uint8)
fp1 = np.ones((96, 128), dtype = np.uint8)*200
# generic image reader
def imread(filepath):
print('imread')
fpath, fext = os.path.splitext(filepath)
if fext in ['.tiff', '.tif']:
print('imread_tiff')
img = tiff.imread(filepath)
else:
print('imread_cv2')
img = cv2.imread(filepath)
return img
# tiff volume to png slice
def tif_view(filepath, z, show_depth=True):
fpath, fext = os.path.splitext(filepath)
print('tif'+filepath)
print('tif'+ fext)
if fext in ['.tiff', '.tif']:
print('happens?')
img = tiff.imread(filepath)
print(img.shape)
if img.ndim==2:
img = np.tile(img[:,:,np.newaxis], [1,1,3])
elif img.ndim==3:
imin = np.argmin(img.shape)
print(imin)
if imin<2:
img = np.moveaxis(img, imin, 2)
print(img.shape)
else:
raise ValueError("TIF cannot have more than three dimensions")
print(z)
if show_depth:
img = img[:, :, z:(z+3)]
else:
img = img[:, :, (z,z,z)]
Ly, Lx, nchan = img.shape
imgi = np.zeros((Ly, Lx, 3))
nn = np.minimum(3, img.shape[-1])
imgi[:,:,:nn] = img[:,:,:nn]
imgi = imgi/(np.max(imgi)+0.0000001)
imgi = (255. * imgi)
filepath = fpath+'z'+str(z)+'.png'
tiff.imwrite(filepath, imgi.astype('uint8'))
print('tif'+filepath)
return filepath
def tif_view_3D(filepath, z):
fpath, fext = os.path.splitext(filepath)
print('tif'+filepath)
print('tif'+ fext)
# assumes (t,)z,(c,)y,x for now
if fext in ['.tiff', '.tif']:
print('happens?')
img = tiff.imread(filepath)
print(img.shape)
if img.ndim==2:
raise ValueError("TIF has only two dimensions")
# select first timepoint
if img.ndim==5:
img = img[0,:,:,:,:]
print(img.shape)
#distinguishes between z,y,x and z,c,y,x
if img.ndim==4:
img = img[z,:,:,:]
print(img.shape)
elif img.ndim==3:
img = img[z,:,:]
print(img.shape)
img = np.tile(img[:,:,np.newaxis], [1,1,3])
else:
raise ValueError("TIF cannot have more than five dimensions")
imin = np.argmin(img.shape)
img = np.moveaxis(img, imin, 2)
print(img.shape)
Ly, Lx, nchan = img.shape
imgi = np.zeros((Ly, Lx, 3))
nn = np.minimum(3, img.shape[-1])
imgi[:,:,:nn] = img[:,:,:nn]
imgi = imgi/(np.max(imgi)+0.0000001)
imgi = (255. * imgi)
filepath = fpath+'.png'
tiff.imwrite(filepath, imgi.astype('uint8'))
else:
raise ValueError("not a TIF/TIFF")
print('tif'+filepath)
return filepath
# function to change image appearance
def norm_path(filepath):
img = imread(filepath)
img = img/(np.max(img)+0.0000001)
#img = np.clip(img, 0, 1)
fpath, fext = os.path.splitext(filepath)
filepath = fpath +'.png'
pil_image = Image.fromarray((255. * img).astype(np.uint8))
pil_image.save(filepath)
#imsave(filepath, pil_image)
print('norm'+filepath)
return filepath
def update_image(filepath, z):
print('update_img')
#for f in filepath:
#f = tif_view(f, z)
filepath_show = tif_view(filepath[-1], z)
filepath_show = norm_path(filepath_show)
print(filepath_show)
print(filepath)
return (filepath_show, [((5, 5, 10, 10), 'nothing')]), filepath, (fp0, [((5, 5, 10, 10), 'nothing')])
def update_with_example(filepath):
print('update_btn')
print(filepath)
filepath_show = filepath
fpath, fext = os.path.splitext(filepath)
filepath = fpath+ '.tif'
return (filepath_show, [((5, 5, 10, 10), 'nothing')]), [filepath], (fp0, [((5, 5, 10, 10), 'nothing')])
def example(filepath):
print(filepath)
return(filepath)
def update_button(filepath, z):
print('update_btn')
print(filepath)
filepath_show = tif_view(filepath, z)
filepath_show = norm_path(filepath_show)
print(filepath_show)
return (filepath_show, [((5, 5, 10, 10), 'nothing')]), [filepath], (fp0, [((5, 5, 10, 10), 'nothing')])
def update_z(filepath, filepath_result, filepath_coordinates, z):
print('update_img')
#for f in filepath:
#f = tif_view(f, z)
filepath_show = tif_view(filepath[-1], z)
filepath_show = norm_path(filepath_show)
if isinstance(filepath_result, str):
filepath_result_show = tif_view(filepath_result, z, show_depth=False)
filepath_result_show = norm_path(filepath_result_show)
else:
filepath_result_show = fp0
print(filepath_show)
print(filepath)
if filepath_coordinates is None:
display_boxes = []
else:
display_boxes = filter_coordinates(filepath_coordinates, z)
return (filepath_show, display_boxes), (filepath_result_show, display_boxes)
def detect_cells(filepath, z):
model = tf.keras.models.load_model('./model_positions', compile=False)
img = tiff.imread(filepath[-1])
img = img/np.max(img)
img = np.tile(img[:,:,:,np.newaxis], [1,1,2])
img = img[np.newaxis,:,:,:,:]
img= pad(img)
tiles = split_z(img)
results = []
for tile in tiles:
tensor = tf.convert_to_tensor(tile)
result = model(tensor).numpy()
result = result[0, :, :, :, 0]
results.append(result)
result = reconstruct_z(results)
print(result.shape)
print(filepath)
fpath, fext = os.path.splitext(filepath[-1])
filepath_result = fpath+'result'+'.tiff'
tiff.imwrite(filepath_result, result)
filepath_result_show = tif_view(filepath_result, z, show_depth=False)
filepath_result_show = norm_path(filepath_result_show)
coordinates = peak_local_max(result, min_distance=2, threshold_abs=0.2, exclude_border=False)
print(coordinates)
filepath_coordinates = fpath+'coordinates'+'.csv'
np.savetxt(filepath_coordinates, coordinates, delimiter=",")
display_boxes = filter_coordinates(filepath_coordinates, z)
return filepath_result, filepath_coordinates, (filepath_result_show, display_boxes)
def pad(img, z_tile = 32, xy_tile = 96):
pad_z = z_tile-np.mod(img.shape[0], z_tile)
pad_y = xy_tile-np.mod(img.shape[1], xy_tile)
pad_x = xy_tile-np.mod(img.shape[2], xy_tile)
print(pad_x)
return np.pad(img, ((0, pad_z), (0, pad_y), (0, pad_x)))
def split_z(img, z_tile=32, z_buffer=2):
if img.shape[0]==32:
return([img])
tiles = []
height = 0
while height<img.shape[0]:
tiles.append(img[height:(height+z_tile), :, :])
height = height+z_tile-z_buffer
return tiles
def reconstruct_z(tiles, z_tile=32, z_buffer=2):
if len(tiles)==1:
return tiles[0]
tiles = [tile[0:(z_tile-z_buffer), :, :] for tile in tiles]
return np.stack(tiles, axis = 0)
def filter_coordinates(filepath_coordinates, z):
coordinates = np.loadtxt(filepath_coordinates, delimiter=",")
print(coordinates)
coordinates = coordinates[np.abs(coordinates[:,0]-z)<3, :]
print(coordinates)
xy_coordinates = coordinates[:, (2,1)]
rel_z = np.abs(coordinates[:, 0]-z)
rel_z = rel_z[:, np.newaxis]
print(rel_z)
rel_z =1
boxes = np.concatenate((xy_coordinates-4+rel_z, xy_coordinates+4-rel_z), axis=1).astype('uint32')
print(boxes)
boxes = [(tuple(box.tolist()),'nothing') for box in boxes]
print(boxes)
return boxes
with gr.Blocks(title = "Hello",
css=".gradio-container {background:purple;}") as demo:
#filepath = ""
with gr.Row():
with gr.Column(scale=2):
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:20pt; font-weight:bold; text-align:center; color:white;">Cellpose-SAM for cellular
segmentation <a style="color:#cfe7fe; font-size:14pt;" href="https://www.biorxiv.org/content/10.1101/2025.04.28.651001v1" target="_blank">[paper]</a>
<a style="color:white; font-size:14pt;" href="https://github.com/MouseLand/cellpose" target="_blank">[github]</a>
<a style="color:white; font-size:14pt;" href="https://www.youtube.com/watch?v=KIdYXgQemcI" target="_blank">[talk]</a>
</div>""")
gr.HTML("""<h4 style="color:white;">You may need to login/refresh for 5 minutes of free GPU compute per day (enough to process hundreds of images). </h4>""")
#input_image = gr.Image(label = "Input", type = "filepath")
input_image = gr.AnnotatedImage(label = "Input", show_legend=False, color_map = {'nothing': '#FFFF00'})
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
resize = gr.Number(label = 'max resize', value = 1000)
max_iter = gr.Number(label = 'max iterations', value = 250)
depth = gr.Number(label = 'z-scale', value = 10)
up_btn = gr.UploadButton("Multi-file upload (png, jpg, tif etc)", visible=True, file_count = "multiple")
#gr.HTML("""<h4 style="color:white;"> Note2: Only the first image of a tif will display the segmentations, but you can download segmentations for all planes. </h4>""")
with gr.Column(scale=1):
send_btn = gr.Button("Run Cellpose-SAM")
down_btn = gr.DownloadButton("Download masks (TIF)", visible=False)
down_btn2 = gr.DownloadButton("Download outlines (PNG)", visible=False)
with gr.Column(scale=2):
#
#output_image = gr.Image(label = "Output", type = "filepath")
output_image = gr.AnnotatedImage(label = "Output", show_legend=False, color_map = {'nothing': '#FFFF00'})
sample_list = os.listdir("./gradio_examples/jpegs")
#sample_list = [ ("./gradio_examples/jpegs/"+sample, [((5, 5, 10, 10), 'nothing')]) for sample in sample_list]
print(sample_list)
sample_list = [ "./gradio_examples/jpegs/"+sample for sample in sample_list]
#sample_list = []
#for j in range(23):
# sample_list.append("samples/img%0.2d.png"%j)
#gr.Examples(sample_list, fn = update_with_example, inputs=input_image, outputs = [input_image, up_btn, output_image], examples_per_page=50, label = "Click on an example to try it")
example_image = gr.Image(visible=False, type='filepath')
gr.Examples(sample_list, fn= example, inputs=example_image, outputs=[example_image], examples_per_page=5, label = "Click on an example to try it")
#input_image.upload(update_button, [input_image, depth], [input_image, up_btn, output_image])
up_btn.upload(update_image, [up_btn, depth], [input_image, up_btn, output_image])
depth.change(update_z, [up_btn, down_btn, down_btn2, depth], [input_image, output_image])
#depth.change(update_depth, [up_btn, depth], depth)
# DO NOT RENDER OUTPUT TWICE
send_btn.click(detect_cells, [up_btn, depth], [down_btn, down_btn2, output_image]).then(update_image, [up_btn, depth], [input_image, up_btn, output_image])# flows, down_btn, down_btn2])
#down_btn.click(download_function, None, [down_btn, down_btn2])
gr.HTML("""<h4 style="color:white;"> Notes:<br>
<li>you can load and process 2D, multi-channel tifs.
<li>the smallest dimension of a tif --> channels
<li>you can upload multiple files and download a zip of the segmentations
<li>install Cellpose-SAM locally for full functionality.
</h4>""")
demo.launch()
|