File size: 13,417 Bytes
8d38779
 
 
 
 
 
 
 
 
 
 
d61d72d
8d38779
 
 
 
d61d72d
 
8d38779
 
 
d61d72d
8d38779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import logging
from typing import List, Dict, Any, Optional, Tuple, Callable, Union
from dotenv import load_dotenv
from llm_providers import LLMProvider
from langchain.schema import HumanMessage
from tantivy_search_agent import TantivySearchAgent

load_dotenv()

class SearchAgent:
    def __init__(self, tantivy_agent: TantivySearchAgent, provider_name: str = "Gemini", api_keys: Dict[str, str] = None):
        """Initialize the search agent with Tantivy agent and LLM client"""
        self.tantivy_agent = tantivy_agent
        self.logger = logging.getLogger(__name__)
        
        # Initialize LLM provider with API keys
        self.llm_provider = LLMProvider(api_keys)
        self.llm = None
        self.set_provider(provider_name)
        
        self.min_confidence_threshold = 0.7

    def set_provider(self, provider_name: str) -> None:
        self.llm = self.llm_provider.get_provider(provider_name)
        if not self.llm:
            raise ValueError(f"Provider {provider_name} not available")
        self.current_provider = provider_name

    def get_available_providers(self) -> list[str]:
        return self.llm_provider.get_available_providers()

    def get_query(self, query: str, failed_queries: List[Dict[str, str]] = []) -> str:
        """Generate a Tantivy query using Claude, considering previously failed queries"""
        try:
            if not self.llm:
                raise ValueError("LLM provider not initialized")

            prompt = (
                "Create a query for this search request with the following restrictions:\n"+
                self.tantivy_agent.get_query_instructions()+                
                "\n\nAdditional instructions: \n"
                "1. return only the search query without any other text\n"
                "2. Use only Hebrew terms for the search query\n"
                "3. the corpus to search in is an ancient Hebrew corpus - Tora and Talmud. so Try to use ancient Hebrew terms and or Talmudic expressions."
                "4. prevent modern words that are not common in talmudic texts \n"              
                f"the search request: {query}"
            )
            
            if failed_queries:
                prompt += (
                    f"\n\nPrevious failed queries:\n"+
                    "------------------------\n"+                    
                    '\n'.join(f"Query: {q['query']}, Reason: {q['reason']}" for q in failed_queries)+
                    "\n\n"
                    "Please generate an alternative query that:\n"
                    "1. Uses different Hebrew synonyms or related terms\n"
                    "2. Tries broader or more general terms\n"
                    "3. Adjusts proximity values or uses wildcards\n"
                    "4. Prevents using modern words that are not common in ancient hebrew and talmud texts\n"
                )
            
            response = self.llm.invoke([HumanMessage(content=prompt)])
            tantivy_query = response.content.strip()  
            self.logger.info(f"Generated Tantivy query: {tantivy_query}")
            return tantivy_query
            
        except Exception as e:
            self.logger.error(f"Error generating query: {e}")
            # Fallback to basic quoted search
            return f'"{query}"'

    def _evaluate_results(self, results: List[Dict[str, Any]], query: str) -> Dict[str, Any]:
        """Evaluate search results using Claude with confidence scoring"""
        if not self.llm:
            raise ValueError("LLM provider not initialized")
     
        # Prepare context from results
        context = "\n".join(f"Result {i}. Source: {r.get('reference',[])}\n Text: {r.get('text', [])}"
            for i, r in enumerate(results)
                )

        try:
            message = self.llm.invoke([HumanMessage(content=f"""Evaluate the search results for answering this question:
                    Question: {query}
                    
                    Search Results:
                    {context}
                    
                    Provide evaluation in this format (3 lines):
                    Confidence score (0.0 to 1.0) indicating how well the results can answer the question. this line should include only the number return, don't include '[line 1]'
                    ACCEPT if score >= {self.min_confidence_threshold}, REFINE if score < {self.min_confidence_threshold}. return only the word ACCEPT or REFINE.
                    Detailed explanation of what information is present or missing, don't include '[line 3]'. it should be only in Hebrew
                             """)])
            lines = message.content.strip().replace('\n\n', '\n').split('\n')
            confidence = float(lines[0])
            decision = lines[1].upper()
            explanation = lines[2]
            
            is_good = decision == 'ACCEPT'

            self.logger.info(f"Evaluation: Confidence={confidence}, Decision={decision}")
            self.logger.info(f"Explanation: {explanation}")
            
            return {
                "confidence": confidence,
                "is_sufficient": is_good,
                "explanation": explanation,
             
            }
            
        except Exception as e:
            self.logger.error(f"Error evaluating results: {e}")
            # Fallback to simple evaluation
            return {
                "confidence": 0.0,
                "is_sufficient": False,
                "explanation": "",         
            }

    def _generate_answer(self, query: str, results: List[Dict[str, Any]]) -> str:
        """Generate answer using Claude with improved context utilization"""
        if not self.llm:
            raise ValueError("LLM provider not initialized")

        if not results:
            return "ืœื ื ืžืฆืื• ืชื•ืฆืื•ืช"

        # Prepare context from results
        context = "\n".join(f"Result {i+1}. Source: {r.get('reference',[])}\n Text: {r.get('text', [])}"
            for i, r in enumerate(results)
                )
        
        try:
            message = self.llm.invoke([HumanMessage(content=f"""Based on these search results, answer this question:
                    Question: {query}
                    
                    Search Results:
                    {context}
                    
                    Requirements for your answer:
                    1. Use only information from the search results
                    2. Be comprehensive but concise
                    3. Structure the answer clearly
                    4. If any aspect of the question cannot be fully answered, acknowledge this
                    5. cite sources for each fact or information you use
                    6. The answer should be only in Hebrew
                    """)])
            return message.content.strip()
            
        except Exception as e:
            self.logger.error(f"Error generating answer: {e}")
            return f"I encountered an error generating the answer: {str(e)}"

    def search_and_answer(self, query: str, num_results: int = 10, max_iterations: int = 3, 
                         on_step: Optional[Callable[[Dict[str, Any]], None]] = None) -> Dict[str, Any]:
        """Execute multi-step search process using Tantivy with streaming updates"""
        steps = []
        all_results = []
        
        # Step 1: Generate Tantivy query
        initial_query = self.get_query(query)
        step = {
            'action': 'ื™ืฆื™ืจืช ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ',
            'description': 'ื ื•ืฆืจื” ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ ืขื‘ื•ืจ ืžื ื•ืข ื”ื—ื™ืคื•ืฉ',
            'results': [{'type': 'query', 'content': initial_query}]
        }
        steps.append(step)
        if on_step:
            on_step(step)
        
        # Step 2: Initial search with Tantivy query
        results = self.tantivy_agent.search(initial_query, num_results)
        
        step = {
            'action': 'ื—ื™ืคื•ืฉ ื‘ืžืื’ืจ',
            'description': f'ื—ื™ืคื•ืฉ ื‘ืžืื’ืจ ืขื‘ื•ืจ ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ: {initial_query}',
            'results': [{'type': 'document', 'content': {
                'title': r['title'],
                'reference': r['reference'],
                'topics': r['topics'],
                'highlights': r['highlights'],
                'score': r['score']
            }} for r in results]
        }
        steps.append(step)
        if on_step:
            on_step(step)

        failed_queries = []

        if results.__len__() == 0:
            failed_queries.append({'query': initial_query, 'reason': 'no results'})
            is_sufficient = False
        else:         
            all_results.extend(results)
            
            # Step 3: Evaluate results
            evaluation = self._evaluate_results(results, query)
            confidence = evaluation['confidence']
            is_sufficient = evaluation['is_sufficient']
            explanation = evaluation['explanation']
            
            step = {
                'action': 'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช',
                'description': 'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช ื—ื™ืคื•ืฉ',
                'results': [{
                    'type': 'evaluation',
                    'content': {
                        'status': 'accepted' if is_sufficient else 'insufficient',
                        'confidence': confidence,
                        'explanation': explanation,
                    }
                }]
            }
            steps.append(step)
            if on_step:
                on_step(step)

            if not is_sufficient:
                failed_queries.append({'query': initial_query, 'reason': explanation})
            
        # Step 4: Additional searches if needed
        attempt = 2
        while not is_sufficient and attempt < max_iterations:
            # Generate new query
            new_query = self.get_query(query, failed_queries)
           
            step = {
                'action': f'ื™ืฆื™ืจืช ืฉืื™ืœืชื” ืžื—ื“ืฉ (ื ื™ืกื™ื•ืŸ {attempt})',
                'description': 'ื ื•ืฆืจื” ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ ื ื•ืกืคืช ืขื‘ื•ืจ ืžื ื•ืข ื”ื—ื™ืคื•ืฉ',
                'results': [
                    {'type': 'new_query', 'content': new_query}
                ]
            }
            steps.append(step)
            if on_step:
                on_step(step)
            
            # Search with new query
            results = self.tantivy_agent.search(new_query, num_results)
            
            step = {
                'action': f'ื—ื™ืคื•ืฉ ื ื•ืกืฃ (ื ื™ืกื™ื•ืŸ {attempt}) ',
                'description': f'ืžื—ืคืฉ ื‘ืžืื’ืจ ืขื‘ื•ืจ ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ: {new_query}',
                'results': [{'type': 'document', 'content': {
                    'title': r['title'],
                    'reference': r['reference'],
                    'topics': r['topics'],
                    'highlights': r['highlights'],
                    'score': r['score']
                }} for r in results]
            }
            steps.append(step)
            if on_step:
                on_step(step)

            if results.__len__() == 0:
                failed_queries.append({'query': new_query, 'reason': 'no results'})
            
            else:
                all_results.extend(results)
            
                # Re-evaluate with current results
                evaluation = self._evaluate_results(results, query)
                confidence = evaluation['confidence']
                is_sufficient = evaluation['is_sufficient']
                explanation = evaluation['explanation']
                
                step = {
                    'action': f'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช (ื ื™ืกื™ื•ืŸ {attempt})',
                    'description': 'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช ื—ื™ืคื•ืฉ ืœื ื™ืกื™ื•ืŸ ื–ื”',
                    'explanation': explanation,
                    'results': [{
                        'type': 'evaluation',
                        'content': {
                            'status': 'accepted' if is_sufficient else 'insufficient',
                            'confidence': confidence,
                            'explanation': explanation,
                        }
                    }]
                }
                steps.append(step)
                if on_step:
                    on_step(step)
                
                if not is_sufficient:
                    failed_queries.append({'query': new_query, 'reason': explanation})
            
            attempt += 1
        
        # Step 5: Generate final answer
        answer = self._generate_answer(query, all_results)
        
        final_result = {
            'steps': steps,
            'answer': answer,
            'sources': [{
                'title': r['title'],
                'reference': r['reference'],
                'topics': r['topics'],
                'path': r['file_path'],
                'highlights': r['highlights'],
                'text': r['text'],
                'score': r['score']
            } for r in all_results]
        }

        # Send final result through callback
        if on_step:
            on_step({
                'action': 'ืกื™ื•ื',
                'description': 'ื”ื—ื™ืคื•ืฉ ื”ื•ืฉืœื',
                'final_result': final_result
            })

        return final_result