File size: 1,289 Bytes
42f8c86 d4b8781 42f8c86 2a7ee55 42f8c86 760d544 5638308 760d544 2a7ee55 7d03cc7 2a7ee55 760d544 7c9d88c 760d544 42f8c86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import gradio as gr
from main import main_fn
#Input structure
##Postal_,age_,town_,storey_,room_ = 680705, 30, 'CHOA CHU KANG', 12, '5 ROOM'
town_list = ['ANG MO KIO', 'BEDOK', 'BISHAN', 'BUKIT BATOK', 'BUKIT MERAH', 'BUKIT PANJANG', 'BUKIT TIMAH', 'CENTRAL AREA', 'CHOA CHU KANG', 'CLEMENTI', 'GEYLANG', 'HOUGANG', 'JURONG EAST', 'JURONG WEST', 'KALLANG/WHAMPOA', 'MARINE PARADE', 'PASIR RIS', 'PUNGGOL', 'QUEENSTOWN', 'SEMBAWANG', 'SENGKANG', 'SERANGOON', 'TAMPINES', 'TOA PAYOH', 'WOODLANDS', 'YISHUN']
room_list = ['1 ROOM', '2 ROOM', '3 ROOM', '4 ROOM', '5 ROOM', 'EXECUTIVE', 'MULTI-GENERATION']
iface = gr.Interface(
fn=main_fn,
inputs= [
gr.inputs.Number(default=680705, label='Postal Code'),
gr.inputs.Number(default=25, label='Years since lease commencement (TOP)'),
gr.inputs.Dropdown(choices=town_list, type="value", default=None, label='Town'),
gr.inputs.Number(default=11, label='Floor'),
gr.inputs.Dropdown(choices=room_list, type="value", default=None, label='Room')
],
outputs= [
gr.Textbox(type="text", label='Predicted House Price ($)'),
gr.Dataframe(row_count = (10, "dynamic"), col_count=(4, "fixed"), label="Past transactions")
]
)
iface.launch() |