Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,369 Bytes
9fd9702 68916f7 9fd9702 d9e93e5 9fd9702 436302d 9fd9702 6d2edfa 436302d 9fd9702 6d2edfa 9fd9702 a74b843 436302d 9fd9702 ad9569f 436302d 9fd9702 5c2dd9a a74b843 6d2edfa 9fd9702 436302d 9fd9702 c327af5 9fd9702 074e144 c327af5 9fd9702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
# Importing the requirements
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from src.app.response import describe_video
# Video, text query, and input parameters
video = gr.Video(label="Video")
query = gr.Textbox(label="Question", placeholder="Enter your question here")
temperature = gr.Slider(
minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature"
)
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K")
max_new_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
# Output for the interface
response = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)
# Examples for the interface
examples = [
[
"./videos/sample_video_1.mp4",
"Here are some frames of a video. Describe this video.",
0.7,
0.8,
100,
512,
],
[
"./videos/sample_video_2.mp4",
"¿Cuál es el animal de este vídeo? ¿Cuantos animales hay?",
0.7,
0.8,
100,
512,
],
[
"./videos/sample_video_3.mp4",
"Que se passe-t-il dans cette vidéo ?",
0.7,
0.8,
100,
512,
],
]
# Title, description, and article for the interface
title = "Video Question Answering"
description = "Gradio Demo for the MiniCPM-V 2.6 Vision Language Understanding and Generation model. This model can answer questions about videos in natural language. To use it, upload your video, type a question, select associated parameters, use the default values, click 'Submit', or click one of the examples to load them. You can read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"
# Launch the interface
interface = gr.Interface(
fn=describe_video,
inputs=[video, query, temperature, top_p, top_k, max_new_tokens],
outputs=response,
examples=examples,
cache_examples=True,
cache_mode="lazy",
title=title,
description=description,
article=article,
theme="ParityError/Anime",
flagging_mode="never",
)
interface.launch(debug=False)
|