File size: 1,693 Bytes
9fd9702
68916f7
 
9fd9702
 
 
 
 
 
 
6d2edfa
9fd9702
 
6d2edfa
9fd9702
 
 
 
 
390ae4a
9fd9702
 
 
ad9569f
9fd9702
ad9569f
9fd9702
 
 
5c2dd9a
fc22648
6d2edfa
9fd9702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Importing the requirements
import warnings
warnings.filterwarnings("ignore")

import gradio as gr
from src.model import describe_video


# Video and text inputs for the interface
video = gr.Video(label="Video")
query = gr.Textbox(label="Question", placeholder="Enter your question here")

# Output for the interface
response = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)

# Examples for the interface
examples = [
    [
        "./videos/sample_video_1.mp4",
        "Here are some frames of a video. Describe this video in detail.",
    ],
    [
        "./videos/sample_video_2.mp4",
        "¿Cuál es el animal de este vídeo? ¿Cuantos animales hay?",
    ],
    ["./videos/sample_video_3.mp4", "Que se passe-t-il dans cette vidéo ?"],
]

# Title, description, and article for the interface
title = "Video Question Answering"
description = "Gradio Demo for the MiniCPM-V 2.6 Vision Language Understanding and Generation model. This model can answer questions about videos in natural language. To use it, simply upload your video, type a question, and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"


# Launch the interface
interface = gr.Interface(
    fn=describe_video,
    inputs=[video, query],
    outputs=response,
    examples=examples,
    title=title,
    description=description,
    article=article,
    theme="Soft",
    allow_flagging="never",
)
interface.launch(debug=False)