File size: 28,550 Bytes
910e2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    Attention,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)

from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin

from timm.models.layers import drop_path, to_2tuple, trunc_normal_
from .modeling_enc_dec import (
    DecoderOutput, DiagonalGaussianDistribution, 
    CausalVaeDecoder, CausalVaeEncoder,
)
from .modeling_causal_conv import CausalConv3d

from utils import (
    is_context_parallel_initialized,
    get_context_parallel_group,
    get_context_parallel_world_size,
    get_context_parallel_rank,
    get_context_parallel_group_rank,
)

from .context_parallel_ops import (
    conv_scatter_to_context_parallel_region,
    conv_gather_from_context_parallel_region,
)


class CausalVideoVAE(ModelMixin, ConfigMixin):
    r"""

    A VAE model with KL loss for encoding images into latents and decoding latent representations into images.



    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented

    for all models (such as downloading or saving).



    Parameters:

        in_channels (int, *optional*, defaults to 3): Number of channels in the input image.

        out_channels (int,  *optional*, defaults to 3): Number of channels in the output.

        down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):

            Tuple of downsample block types.

        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):

            Tuple of upsample block types.

        block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):

            Tuple of block output channels.

        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.

        latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.

        sample_size (`int`, *optional*, defaults to `32`): Sample input size.

        scaling_factor (`float`, *optional*, defaults to 0.18215):

            The component-wise standard deviation of the trained latent space computed using the first batch of the

            training set. This is used to scale the latent space to have unit variance when training the diffusion

            model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the

            diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1

            / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image

            Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.

        force_upcast (`bool`, *optional*, default to `True`):

            If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE

            can be fine-tuned / trained to a lower range without loosing too much precision in which case

            `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix

    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(

        self,

        # encoder related parameters

        encoder_in_channels: int = 3,

        encoder_out_channels: int = 4,

        encoder_layers_per_block: Tuple[int, ...] = (2, 2, 2, 2),

        encoder_down_block_types: Tuple[str, ...] = (

            "DownEncoderBlockCausal3D",

            "DownEncoderBlockCausal3D",

            "DownEncoderBlockCausal3D",

            "DownEncoderBlockCausal3D",

        ),

        encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),

        encoder_spatial_down_sample: Tuple[bool, ...] = (True, True, True, False),

        encoder_temporal_down_sample: Tuple[bool, ...] = (True, True, True, False),

        encoder_block_dropout: Tuple[int, ...] = (0.0, 0.0, 0.0, 0.0),

        encoder_act_fn: str = "silu",

        encoder_norm_num_groups: int = 32,

        encoder_double_z: bool = True,

        encoder_type: str = 'causal_vae_conv',

        # decoder related

        decoder_in_channels: int = 4,

        decoder_out_channels: int = 3,

        decoder_layers_per_block: Tuple[int, ...] = (3, 3, 3, 3),

        decoder_up_block_types: Tuple[str, ...] = (

            "UpDecoderBlockCausal3D",

            "UpDecoderBlockCausal3D",

            "UpDecoderBlockCausal3D",

            "UpDecoderBlockCausal3D",

        ),

        decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),

        decoder_spatial_up_sample: Tuple[bool, ...] = (True, True, True, False),

        decoder_temporal_up_sample: Tuple[bool, ...] = (True, True, True, False),

        decoder_block_dropout: Tuple[int, ...] = (0.0, 0.0, 0.0, 0.0),

        decoder_act_fn: str = "silu",

        decoder_norm_num_groups: int = 32,

        decoder_type: str = 'causal_vae_conv',

        sample_size: int = 256,

        scaling_factor: float = 0.18215,

        add_post_quant_conv: bool = True,

        interpolate: bool = False,

        downsample_scale: int = 8,

    ):
        super().__init__()

        print(f"The latent dimmension channes is {encoder_out_channels}")
        # pass init params to Encoder

        self.encoder = CausalVaeEncoder(
            in_channels=encoder_in_channels,
            out_channels=encoder_out_channels,
            down_block_types=encoder_down_block_types,
            spatial_down_sample=encoder_spatial_down_sample,
            temporal_down_sample=encoder_temporal_down_sample,
            block_out_channels=encoder_block_out_channels,
            layers_per_block=encoder_layers_per_block,
            act_fn=encoder_act_fn,
            norm_num_groups=encoder_norm_num_groups,
            double_z=True,
            block_dropout=encoder_block_dropout,
        )

        # pass init params to Decoder
        self.decoder = CausalVaeDecoder(
            in_channels=decoder_in_channels,
            out_channels=decoder_out_channels,
            up_block_types=decoder_up_block_types,
            spatial_up_sample=decoder_spatial_up_sample,
            temporal_up_sample=decoder_temporal_up_sample,
            block_out_channels=decoder_block_out_channels,
            layers_per_block=decoder_layers_per_block,
            norm_num_groups=decoder_norm_num_groups,
            act_fn=decoder_act_fn,
            interpolate=interpolate,
            block_dropout=decoder_block_dropout,
        )

        self.quant_conv = CausalConv3d(2 * encoder_out_channels, 2 * encoder_out_channels, kernel_size=1, stride=1)
        self.post_quant_conv = CausalConv3d(encoder_out_channels, encoder_out_channels, kernel_size=1, stride=1)
        self.use_tiling = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = self.config.sample_size

        sample_size = (
            self.config.sample_size[0]
            if isinstance(self.config.sample_size, (list, tuple))
            else self.config.sample_size
        )
        self.tile_latent_min_size = int(sample_size / downsample_scale) 
        self.encode_tile_overlap_factor = 1 / 4
        self.decode_tile_overlap_factor = 1 / 4
        self.downsample_scale = downsample_scale

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (Encoder, Decoder)):
            module.gradient_checkpointing = value

    def enable_tiling(self, use_tiling: bool = True):
        r"""

        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to

        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow

        processing larger images.

        """
        self.use_tiling = use_tiling

    def disable_tiling(self):
        r"""

        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing

        decoding in one step.

        """
        self.enable_tiling(False)

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""

        Returns:

            `dict` of attention processors: A dictionary containing all attention processors used in the model with

            indexed by its weight name.

        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""

        Sets the attention processor to use to compute attention.



        Parameters:

            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):

                The instantiated processor class or a dictionary of processor classes that will be set as the processor

                for **all** `Attention` layers.



                If `processor` is a dict, the key needs to define the path to the corresponding cross attention

                processor. This is strongly recommended when setting trainable attention processors.



        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """

        Disables custom attention processors and sets the default attention implementation.

        """
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)

    def encode(

        self, x: torch.FloatTensor, return_dict: bool = True,

        is_init_image=True, temporal_chunk=False, window_size=16, tile_sample_min_size=256,

    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        """

        Encode a batch of images into latents.



        Args:

            x (`torch.FloatTensor`): Input batch of images.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.



        Returns:

                The latent representations of the encoded images. If `return_dict` is True, a

                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.

        """
        self.tile_sample_min_size = tile_sample_min_size
        self.tile_latent_min_size = int(tile_sample_min_size / self.downsample_scale)

        if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
            return self.tiled_encode(x, return_dict=return_dict, is_init_image=is_init_image, 
                temporal_chunk=temporal_chunk, window_size=window_size)

        if temporal_chunk:
            moments = self.chunk_encode(x, window_size=window_size)
        else:
            h = self.encoder(x, is_init_image=is_init_image, temporal_chunk=False)
            moments = self.quant_conv(h, is_init_image=is_init_image, temporal_chunk=False)
    
        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    @torch.no_grad()
    def chunk_encode(self, x: torch.FloatTensor, window_size=16):
        # Only used during inference
        # Encode a long video clips through sliding window
        num_frames = x.shape[2]
        assert (num_frames - 1) % self.downsample_scale == 0
        init_window_size = window_size + 1
        frame_list = [x[:,:,:init_window_size]]

        # To chunk the long video 
        full_chunk_size = (num_frames - init_window_size) // window_size
        fid = init_window_size
        for idx in range(full_chunk_size):
            frame_list.append(x[:, :, fid:fid+window_size])
            fid += window_size

        if fid < num_frames:
            frame_list.append(x[:, :, fid:])

        latent_list = []
        for idx, frames in enumerate(frame_list):
            if idx == 0:
                h = self.encoder(frames, is_init_image=True, temporal_chunk=True)
                moments = self.quant_conv(h, is_init_image=True, temporal_chunk=True)
            else:
                h = self.encoder(frames, is_init_image=False, temporal_chunk=True)
                moments = self.quant_conv(h, is_init_image=False, temporal_chunk=True)

            latent_list.append(moments)

        latent = torch.cat(latent_list, dim=2)
        return latent

    def get_last_layer(self):
        return self.decoder.conv_out.conv.weight
    
    @torch.no_grad()
    def chunk_decode(self, z: torch.FloatTensor, window_size=2):
        num_frames = z.shape[2]
        init_window_size = window_size + 1
        frame_list = [z[:,:,:init_window_size]]

        # To chunk the long video 
        full_chunk_size = (num_frames - init_window_size) // window_size
        fid = init_window_size
        for idx in range(full_chunk_size):
            frame_list.append(z[:, :, fid:fid+window_size])
            fid += window_size

        if fid < num_frames:
            frame_list.append(z[:, :, fid:])

        dec_list = []
        for idx, frames in enumerate(frame_list):
            if idx == 0:
                z_h = self.post_quant_conv(frames, is_init_image=True, temporal_chunk=True)
                dec = self.decoder(z_h, is_init_image=True, temporal_chunk=True)
            else:
                z_h = self.post_quant_conv(frames, is_init_image=False, temporal_chunk=True)
                dec = self.decoder(z_h, is_init_image=False, temporal_chunk=True)

            dec_list.append(dec)

        dec = torch.cat(dec_list, dim=2)
        return dec

    def decode(self, z: torch.FloatTensor, is_init_image=True, temporal_chunk=False, 

            return_dict: bool = True, window_size: int = 2, tile_sample_min_size: int = 256,) -> Union[DecoderOutput, torch.FloatTensor]:
        
        self.tile_sample_min_size = tile_sample_min_size
        self.tile_latent_min_size = int(tile_sample_min_size / self.downsample_scale)

        if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
            return self.tiled_decode(z, is_init_image=is_init_image, 
                    temporal_chunk=temporal_chunk, window_size=window_size, return_dict=return_dict)

        if temporal_chunk:
            dec = self.chunk_decode(z, window_size=window_size)
        else:
            z = self.post_quant_conv(z, is_init_image=is_init_image, temporal_chunk=False)
            dec = self.decoder(z, is_init_image=is_init_image, temporal_chunk=False)

        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[3], b.shape[3], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent)
        return b

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[4], b.shape[4], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent)
        return b

    def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, 

            is_init_image=True, temporal_chunk=False, window_size=16,) -> AutoencoderKLOutput:
        r"""Encode a batch of images using a tiled encoder.



        When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several

        steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is

        different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the

        tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the

        output, but they should be much less noticeable.



        Args:

            x (`torch.FloatTensor`): Input batch of images.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.



        Returns:

            [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:

                If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain

                `tuple` is returned.

        """
        overlap_size = int(self.tile_sample_min_size * (1 - self.encode_tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.encode_tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        # Split the image into 512x512 tiles and encode them separately.
        rows = []
        for i in range(0, x.shape[3], overlap_size):
            row = []
            for j in range(0, x.shape[4], overlap_size):
                tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                if temporal_chunk:
                    tile = self.chunk_encode(tile, window_size=window_size)
                else:
                    tile = self.encoder(tile, is_init_image=True, temporal_chunk=False)
                    tile = self.quant_conv(tile, is_init_image=True, temporal_chunk=False)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=4))

        moments = torch.cat(result_rows, dim=3)

        posterior = DiagonalGaussianDistribution(moments)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def tiled_decode(self, z: torch.FloatTensor, is_init_image=True, 

            temporal_chunk=False, window_size=2, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""

        Decode a batch of images using a tiled decoder.



        Args:

            z (`torch.FloatTensor`): Input batch of latent vectors.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.



        Returns:

            [`~models.vae.DecoderOutput`] or `tuple`:

                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is

                returned.

        """
        overlap_size = int(self.tile_latent_min_size * (1 - self.decode_tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.decode_tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        # Split z into overlapping 64x64 tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, z.shape[3], overlap_size):
            row = []
            for j in range(0, z.shape[4], overlap_size):
                tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
                if temporal_chunk:
                    decoded = self.chunk_decode(tile, window_size=window_size)
                else:
                    tile = self.post_quant_conv(tile, is_init_image=True, temporal_chunk=False)
                    decoded = self.decoder(tile, is_init_image=True, temporal_chunk=False)
                row.append(decoded)
            rows.append(row)
        result_rows = []

        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=4))

        dec = torch.cat(result_rows, dim=3)
        if not return_dict:
            return (dec,)

        return DecoderOutput(sample=dec)

    def forward(

        self,

        sample: torch.FloatTensor,

        sample_posterior: bool = True,

        generator: Optional[torch.Generator] = None,

        freeze_encoder: bool = False,

        is_init_image=True, 

        temporal_chunk=False,

    ) -> Union[DecoderOutput, torch.FloatTensor]:
        r"""

        Args:

            sample (`torch.FloatTensor`): Input sample.

            sample_posterior (`bool`, *optional*, defaults to `False`):

                Whether to sample from the posterior.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.

        """
        x = sample

        if is_context_parallel_initialized():
            assert self.training, "Only supports during training now"

            if freeze_encoder:
                with torch.no_grad():
                    h = self.encoder(x, is_init_image=True, temporal_chunk=False)
                    moments = self.quant_conv(h, is_init_image=True, temporal_chunk=False)
                    posterior = DiagonalGaussianDistribution(moments)
                    global_posterior = posterior
            else:
                h = self.encoder(x, is_init_image=True, temporal_chunk=False)
                moments = self.quant_conv(h, is_init_image=True, temporal_chunk=False)
                posterior = DiagonalGaussianDistribution(moments)
                global_moments = conv_gather_from_context_parallel_region(moments, dim=2, kernel_size=1)
                global_posterior = DiagonalGaussianDistribution(global_moments)
            
            if sample_posterior:
                z = posterior.sample(generator=generator)
            else:
                z = posterior.mode()

            if get_context_parallel_rank() == 0:
                dec = self.decode(z, is_init_image=True).sample
            else:
                # Do not drop the first upsampled frame
                dec = self.decode(z, is_init_image=False).sample

            return global_posterior, dec

        else:
            # The normal training
            if freeze_encoder:
                with torch.no_grad():
                    posterior = self.encode(x, is_init_image=is_init_image, 
                            temporal_chunk=temporal_chunk).latent_dist
            else:
                posterior = self.encode(x, is_init_image=is_init_image, 
                        temporal_chunk=temporal_chunk).latent_dist
        
            if sample_posterior:
                z = posterior.sample(generator=generator)
            else:
                z = posterior.mode()

            dec = self.decode(z, is_init_image=is_init_image, temporal_chunk=temporal_chunk).sample

            return posterior, dec

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """

        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,

        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.



        <Tip warning={true}>



        This API is 🧪 experimental.



        </Tip>

        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.



        <Tip warning={true}>



        This API is 🧪 experimental.



        </Tip>



        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)