File size: 14,707 Bytes
910e2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import sys
import os
sys.path.append(os.path.abspath('.'))
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import random
from pathlib import Path
from collections import OrderedDict

from dataset import (
    ImageDataset,
    VideoDataset,
    create_mixed_dataloaders,
)

from trainer_misc import (
    NativeScalerWithGradNormCount,
    create_optimizer,
    train_one_epoch,
    auto_load_model,
    save_model,
    init_distributed_mode,
    cosine_scheduler,
)

from video_vae import CausalVideoVAELossWrapper

from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

import utils


def get_args():
    parser = argparse.ArgumentParser('Pytorch Multi-process Training script for Video VAE', add_help=False)
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--epochs', default=100, type=int)
    parser.add_argument('--print_freq', default=20, type=int)
    parser.add_argument('--iters_per_epoch', default=2000, type=int)
    parser.add_argument('--save_ckpt_freq', default=20, type=int)

    # Model parameters
    parser.add_argument('--ema_update', action='store_true')
    parser.add_argument('--ema_decay', default=0.99, type=float, metavar='MODEL', help='ema decay for quantizer')

    parser.add_argument('--model_path', default='', type=str, help='The vae weight path')
    parser.add_argument('--model_dtype', default='bf16', help="The Model Dtype: bf16 or df16")

    # Using the context parallel to distribute multiple video clips to different devices
    parser.add_argument('--use_context_parallel', action='store_true')
    parser.add_argument('--context_size', default=2, type=int, help="The context length size")
    parser.add_argument('--resolution', default=256, type=int, help="The input resolution for VAE training")
    parser.add_argument('--max_frames', default=24, type=int, help='number of max video frames')
    parser.add_argument('--use_image_video_mixed_training', action='store_true', help="Whether to use the mixed image and video training")

    # The loss weights
    parser.add_argument('--lpips_ckpt', default="/home/jinyang06/models/vae/video_vae_baseline/vgg_lpips.pth", type=str, help="The LPIPS checkpoint path")
    parser.add_argument('--disc_start', default=0, type=int, help="The start iteration for adding GAN Loss")
    parser.add_argument('--logvar_init', default=0.0, type=float, help="The log var init" )
    parser.add_argument('--kl_weight', default=1e-6, type=float, help="The KL loss weight")
    parser.add_argument('--pixelloss_weight', default=1.0, type=float, help="The pixel reconstruction loss weight")
    parser.add_argument('--perceptual_weight', default=1.0, type=float, help="The perception loss weight")
    parser.add_argument('--disc_weight', default=0.1, type=float,  help="The GAN loss weight")
    parser.add_argument('--pretrained_vae_weight', default='', type=str, help='The pretrained vae ckpt path')  
    parser.add_argument('--not_add_normalize', action='store_true')
    parser.add_argument('--add_discriminator', action='store_true')
    parser.add_argument('--freeze_encoder', action='store_true')

    # Optimizer parameters
    parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
                        help='Optimizer (default: "adamw"')
    parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
                        help='Optimizer Epsilon (default: 1e-8)')
    parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
                        help='Optimizer Betas (default: None, use opt default)')
    parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
                        help='Clip gradient norm (default: None, no clipping)')
    parser.add_argument('--weight_decay', type=float, default=1e-4,
                        help='weight decay (default: 1e-4)')
    parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the

        weight decay. We use a cosine schedule for WD. 

        (Set the same value with args.weight_decay to keep weight decay no change)""")

    parser.add_argument('--lr', type=float, default=5e-5, metavar='LR',
                        help='learning rate (default: 5e-5)')
    parser.add_argument('--lr_disc', type=float, default=1e-5, metavar='LR',
                        help='learning rate (default: 1e-5) of the discriminator')
    parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
                        help='warmup learning rate (default: 1e-6)')
    parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
                        help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')

    parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
                        help='epochs to warmup LR, if scheduler supports')
    parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
                        help='epochs to warmup LR, if scheduler supports')

    # Dataset parameters
    parser.add_argument('--output_dir', default='',
                        help='path where to save, empty for no saving')
    parser.add_argument('--image_anno', default='', type=str, help="The image data annotation file path")
    parser.add_argument('--video_anno', default='', type=str, help="The video data annotation file path")
    parser.add_argument('--image_mix_ratio', default=0.1, type=float, help="The image data proportion in the training batch")

    # Distributed Training parameters
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--seed', default=0, type=int)
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument('--auto_resume', action='store_true')
    parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
    parser.set_defaults(auto_resume=True)

    parser.add_argument('--dist_eval', action='store_true', default=True,
                        help='Enabling distributed evaluation')
    parser.add_argument('--disable_eval', action='store_true', default=False)
    
    parser.add_argument('--eval', action='store_true', default=False, help="Perform evaluation only")
    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--global_step', default=0, type=int, metavar='N', help='The global optimization step')
    parser.add_argument('--num_workers', default=10, type=int)
    parser.add_argument('--pin_mem', action='store_true',
                        help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
    parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
                        help='')
    parser.set_defaults(pin_mem=True)
    
    # distributed training parameters
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--local_rank', default=-1, type=int)
    parser.add_argument('--dist_on_itp', action='store_true')
    parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')

    return parser.parse_args()


def build_model(args):
    model_dtype = args.model_dtype
    model_path = args.model_path

    print(f"Load the base VideoVAE checkpoint from path: {model_path}, using dtype {model_dtype}")

    model = CausalVideoVAELossWrapper(
        model_path,
        model_dtype='fp32',      # For training, we used mixed training
        disc_start=args.disc_start,
        logvar_init=args.logvar_init,
        kl_weight=args.kl_weight,
        pixelloss_weight=args.pixelloss_weight,
        perceptual_weight=args.perceptual_weight,
        disc_weight=args.disc_weight,
        interpolate=False,
        add_discriminator=args.add_discriminator,
        freeze_encoder=args.freeze_encoder,
        load_loss_module=True,
        lpips_ckpt=args.lpips_ckpt,
    )

    if args.pretrained_vae_weight:
        pretrained_vae_weight = args.pretrained_vae_weight
        print(f"Loading the vae checkpoint from {pretrained_vae_weight}")
        model.load_checkpoint(pretrained_vae_weight)

    return model


def main(args):
    init_distributed_mode(args)

    # If enabled, distribute multiple video clips to different devices
    if args.use_context_parallel:
        utils.initialize_context_parallel(args.context_size)

    print(args)

    device = torch.device(args.device)

    # fix the seed for reproducibility
    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)

    cudnn.benchmark = True

    model = build_model(args)
    
    world_size = utils.get_world_size()
    global_rank = utils.get_rank()

    num_training_steps_per_epoch = args.iters_per_epoch
    log_writer = None

    # building dataset and dataloaders
    image_gpus = max(1, int(world_size * args.image_mix_ratio))
    if args.use_image_video_mixed_training:
        video_gpus = world_size - image_gpus
    else:
        # only use video data
        video_gpus = world_size
        image_gpus = 0

    if global_rank < video_gpus:
        training_dataset = VideoDataset(args.video_anno, resolution=args.resolution, 
            max_frames=args.max_frames, add_normalize=not args.not_add_normalize)
    else:
        training_dataset = ImageDataset(args.image_anno, resolution=args.resolution, 
            max_frames=args.max_frames // 4, add_normalize=not args.not_add_normalize)

    data_loader_train = create_mixed_dataloaders(
        training_dataset,
        batch_size=args.batch_size, 
        num_workers=args.num_workers,
        epoch=args.seed,
        world_size=world_size,
        rank=global_rank,
        image_mix_ratio=args.image_mix_ratio,
    )
    
    torch.distributed.barrier()

    model.to(device)
    model_without_ddp = model

    n_learnable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
    n_fix_parameters = sum(p.numel() for p in model.parameters() if not p.requires_grad)
    for name, p in model.named_parameters():
        if not p.requires_grad:
            print(name)
    print(f'total number of learnable params: {n_learnable_parameters / 1e6} M')
    print(f'total number of fixed params in : {n_fix_parameters / 1e6} M')

    total_batch_size = args.batch_size * utils.get_world_size()
    print("LR = %.8f" % args.lr)
    print("Min LR = %.8f" % args.min_lr)
    print("Weigth Decay = %.8f" % args.weight_decay)
    print("Batch size = %d" % total_batch_size)
    print("Number of training steps = %d" % (num_training_steps_per_epoch * args.epochs))
    print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))

    optimizer = create_optimizer(args, model_without_ddp.vae)
    optimizer_disc = create_optimizer(args, model_without_ddp.loss.discriminator) if args.add_discriminator else None

    loss_scaler = NativeScalerWithGradNormCount(enabled=True if args.model_dtype == "fp16" else False)
    loss_scaler_disc = NativeScalerWithGradNormCount(enabled=True if args.model_dtype == "fp16" else False) if args.add_discriminator else None

    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
        model_without_ddp = model.module

    print("Use step level LR & WD scheduler!")

    lr_schedule_values = cosine_scheduler(
        args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
        warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
    )

    lr_schedule_values_disc = cosine_scheduler(
        args.lr_disc, args.min_lr, args.epochs, num_training_steps_per_epoch,
        warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
    ) if args.add_discriminator else None

    auto_load_model(
        args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, 
        loss_scaler=loss_scaler, optimizer_disc=optimizer_disc,
    )
    
    print(f"Start training for {args.epochs} epochs, the global iterations is {args.global_step}")
    start_time = time.time()
    torch.distributed.barrier()
            
    for epoch in range(args.start_epoch, args.epochs):
        
        train_stats = train_one_epoch(
            model, 
            args.model_dtype,
            data_loader_train,
            optimizer, 
            optimizer_disc,
            device, 
            epoch, 
            loss_scaler,
            loss_scaler_disc,
            args.clip_grad, 
            log_writer=log_writer,
            start_steps=epoch * num_training_steps_per_epoch,
            lr_schedule_values=lr_schedule_values,
            lr_schedule_values_disc=lr_schedule_values_disc,
            args=args,
            print_freq=args.print_freq,
            iters_per_epoch=num_training_steps_per_epoch,
        )

        if args.output_dir:
            if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
                save_model(
                    args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
                    loss_scaler=loss_scaler, epoch=epoch, save_ckpt_freq=args.save_ckpt_freq, optimizer_disc=optimizer_disc
                )
        
        log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                    'epoch': epoch, 'n_parameters': n_learnable_parameters}

        if args.output_dir and utils.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == '__main__':
    opts = get_args()
    if opts.output_dir:
        Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
    main(opts)