Spaces:
Build error
Build error
File size: 58,225 Bytes
910e2ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 |
import torch
import os
import gc
import sys
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import math
import random
import PIL
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
from accelerate import Accelerator, cpu_offload
from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler
from video_vae.modeling_causal_vae import CausalVideoVAE
from trainer_misc import (
all_to_all,
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_group_rank,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_rank,
)
from .mmdit_modules import (
PyramidDiffusionMMDiT,
SD3TextEncoderWithMask,
)
from .flux_modules import (
PyramidFluxTransformer,
FluxTextEncoderWithMask,
)
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def build_pyramid_dit(
model_name : str,
model_path : str,
torch_dtype,
use_flash_attn : bool,
use_mixed_training: bool,
interp_condition_pos: bool = True,
use_gradient_checkpointing: bool = False,
use_temporal_causal: bool = True,
gradient_checkpointing_ratio: float = 0.6,
):
model_dtype = torch.float32 if use_mixed_training else torch_dtype
if model_name == "pyramid_flux":
dit = PyramidFluxTransformer.from_pretrained(
model_path, torch_dtype=model_dtype,
use_gradient_checkpointing=use_gradient_checkpointing,
gradient_checkpointing_ratio=gradient_checkpointing_ratio,
use_flash_attn=use_flash_attn, use_temporal_causal=use_temporal_causal,
interp_condition_pos=interp_condition_pos, axes_dims_rope=[16, 24, 24],
)
elif model_name == "pyramid_mmdit":
dit = PyramidDiffusionMMDiT.from_pretrained(
model_path, torch_dtype=model_dtype, use_gradient_checkpointing=use_gradient_checkpointing,
gradient_checkpointing_ratio=gradient_checkpointing_ratio,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
else:
raise NotImplementedError(f"Unsupported DiT architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`")
return dit
def build_text_encoder(
model_name : str,
model_path : str,
torch_dtype,
load_text_encoder: bool = True,
):
# The text encoder
if load_text_encoder:
if model_name == "pyramid_flux":
text_encoder = FluxTextEncoderWithMask(model_path, torch_dtype=torch_dtype)
elif model_name == "pyramid_mmdit":
text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype)
else:
raise NotImplementedError(f"Unsupported Text Encoder architecture, please set the model_name to `pyramid_flux` or `pyramid_mmdit`")
else:
text_encoder = None
return text_encoder
class PyramidDiTForVideoGeneration:
"""
The pyramid dit for both image and video generation, The running class wrapper
This class is mainly for fixed unit implementation: 1 + n + n + n
"""
def __init__(self, model_path, model_dtype='bf16', model_name='pyramid_mmdit', use_gradient_checkpointing=False,
return_log=True, model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1],
sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False,
load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True,
corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], video_sync_group=8, gradient_checkpointing_ratio=0.6, **kwargs,
):
super().__init__()
if model_dtype == 'bf16':
torch_dtype = torch.bfloat16
elif model_dtype == 'fp16':
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
self.stages = stages
self.sample_ratios = sample_ratios
self.corrupt_ratio = corrupt_ratio
dit_path = os.path.join(model_path, model_variant)
# The dit
self.dit = build_pyramid_dit(
model_name, dit_path, torch_dtype,
use_flash_attn=use_flash_attn, use_mixed_training=use_mixed_training,
interp_condition_pos=interp_condition_pos, use_gradient_checkpointing=use_gradient_checkpointing,
use_temporal_causal=use_temporal_causal, gradient_checkpointing_ratio=gradient_checkpointing_ratio,
)
# The text encoder
self.text_encoder = build_text_encoder(
model_name, model_path, torch_dtype, load_text_encoder=load_text_encoder,
)
self.load_text_encoder = load_text_encoder
# The base video vae decoder
if load_vae:
self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False)
# Freeze vae
for parameter in self.vae.parameters():
parameter.requires_grad = False
else:
self.vae = None
self.load_vae = load_vae
# For the image latent
if model_name == "pyramid_flux":
self.vae_shift_factor = -0.04
self.vae_scale_factor = 1 / 1.8726
elif model_name == "pyramid_mmdit":
self.vae_shift_factor = 0.1490
self.vae_scale_factor = 1 / 1.8415
else:
raise NotImplementedError(f"Unsupported model name : {model_name}")
# For the video latent
self.vae_video_shift_factor = -0.2343
self.vae_video_scale_factor = 1 / 3.0986
self.downsample = 8
# Configure the video training hyper-parameters
# The video sequence: one frame + N * unit
self.frame_per_unit = frame_per_unit
self.max_temporal_length = max_temporal_length
assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit"
self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios))
self.scheduler = PyramidFlowMatchEulerDiscreteScheduler(
shift=timestep_shift, stages=len(self.stages),
stage_range=stage_range, gamma=scheduler_gamma,
)
print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}")
self.cfg_rate = 0.1
self.return_log = return_log
self.use_flash_attn = use_flash_attn
self.model_name = model_name
self.sequential_offload_enabled = False
self.accumulate_steps = 0
self.video_sync_group = video_sync_group
def _enable_sequential_cpu_offload(self, model):
self.sequential_offload_enabled = True
torch_device = torch.device("cuda")
device_type = torch_device.type
device = torch.device(f"{device_type}:0")
offload_buffers = len(model._parameters) > 0
cpu_offload(model, device, offload_buffers=offload_buffers)
def enable_sequential_cpu_offload(self):
self._enable_sequential_cpu_offload(self.text_encoder)
self._enable_sequential_cpu_offload(self.dit)
def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
dit_checkpoint = OrderedDict()
for key in checkpoint:
if key.startswith('vae') or key.startswith('text_encoder'):
continue
if key.startswith('dit'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
dit_checkpoint[new_key] = checkpoint[key]
else:
dit_checkpoint[key] = checkpoint[key]
load_result = self.dit.load_state_dict(dit_checkpoint, strict=True)
print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}")
def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'):
checkpoint = torch.load(vae_checkpoint_path, map_location='cpu')
checkpoint = checkpoint[model_key]
loaded_checkpoint = OrderedDict()
for key in checkpoint.keys():
if key.startswith('vae.'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
loaded_checkpoint[new_key] = checkpoint[key]
load_result = self.vae.load_state_dict(loaded_checkpoint)
print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}")
@torch.no_grad()
def add_pyramid_noise(
self,
latents_list,
sample_ratios=[1, 1, 1],
):
"""
add the noise for each pyramidal stage
noting that, this method is a general strategy for pyramid-flow, it
can be used for both image and video training.
You can also use this method to train pyramid-flow with full-sequence
diffusion in video generation (without using temporal pyramid and autoregressive modeling)
Params:
latent_list: [low_res, mid_res, high_res] The vae latents of all stages
sample_ratios: The proportion of each stage in the training batch
"""
noise = torch.randn_like(latents_list[-1])
device = noise.device
dtype = latents_list[-1].dtype
t = noise.shape[2]
stages = len(self.stages)
tot_samples = noise.shape[0]
assert tot_samples % (int(sum(sample_ratios))) == 0
assert stages == len(sample_ratios)
height, width = noise.shape[-2], noise.shape[-1]
noise_list = [noise]
cur_noise = noise
for i_s in range(stages-1):
height //= 2;width //= 2
cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w')
cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2
cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t)
noise_list.append(cur_noise)
noise_list = list(reversed(noise_list)) # make sure from low res to high res
# To calculate the padding batchsize and column size
batch_size = tot_samples // int(sum(sample_ratios))
column_size = int(sum(sample_ratios))
column_to_stage = {}
i_sum = 0
for i_s, column_num in enumerate(sample_ratios):
for index in range(i_sum, i_sum + column_num):
column_to_stage[index] = i_s
i_sum += column_num
noisy_latents_list = []
ratios_list = []
targets_list = []
timesteps_list = []
training_steps = self.scheduler.config.num_train_timesteps
# from low resolution to high resolution
for index in range(column_size):
i_s = column_to_stage[index]
clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w]
last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size]
start_sigma = self.scheduler.start_sigmas[i_s]
end_sigma = self.scheduler.end_sigmas[i_s]
if i_s == 0:
start_point = noise_list[i_s][index::column_size]
else:
# Get the upsampled latent
last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w')
last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest')
last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t)
start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent
if i_s == stages - 1:
end_point = clean_latent
else:
end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent
# To sample a timestep
u = compute_density_for_timestep_sampling(
weighting_scheme='random',
batch_size=batch_size,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
indices = (u * training_steps).long() # Totally 1000 training steps per stage
indices = indices.clamp(0, training_steps-1)
timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device)
ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device)
while len(ratios.shape) < start_point.ndim:
ratios = ratios.unsqueeze(-1)
# interpolate the latent
noisy_latents = ratios * start_point + (1 - ratios) * end_point
last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio
# [stage1_latent, stage2_latent, ..., stagen_latent], which will be concat after patching
noisy_latents_list.append([noisy_latents.to(dtype)])
ratios_list.append(ratios.to(dtype))
timesteps_list.append(timesteps.to(dtype))
targets_list.append(start_point - end_point) # The standard rectified flow matching objective
return noisy_latents_list, ratios_list, timesteps_list, targets_list
def sample_stage_length(self, num_stages, max_units=None):
max_units_in_training = 1 + ((self.max_temporal_length - 1) // self.frame_per_unit)
cur_rank = get_rank()
self.accumulate_steps = self.accumulate_steps + 1
total_turns = max_units_in_training // self.video_sync_group
update_turn = self.accumulate_steps % total_turns
# # uniformly sampling each position
cur_highres_unit = max(int((cur_rank % self.video_sync_group + 1) + update_turn * self.video_sync_group), 1)
cur_mid_res_unit = max(1 + max_units_in_training - cur_highres_unit, 1)
cur_low_res_unit = cur_mid_res_unit
if max_units is not None:
cur_highres_unit = min(cur_highres_unit, max_units)
cur_mid_res_unit = min(cur_mid_res_unit, max_units)
cur_low_res_unit = min(cur_low_res_unit, max_units)
length_list = [cur_low_res_unit, cur_mid_res_unit, cur_highres_unit]
assert len(length_list) == num_stages
return length_list
@torch.no_grad()
def add_pyramid_noise_with_temporal_pyramid(
self,
latents_list,
sample_ratios=[1, 1, 1],
):
"""
add the noise for each pyramidal stage, used for AR video training with temporal pyramid
Params:
latent_list: [low_res, mid_res, high_res] The vae latents of all stages
sample_ratios: The proportion of each stage in the training batch
"""
stages = len(self.stages)
tot_samples = latents_list[0].shape[0]
device = latents_list[0].device
dtype = latents_list[0].dtype
assert tot_samples % (int(sum(sample_ratios))) == 0
assert stages == len(sample_ratios)
noise = torch.randn_like(latents_list[-1])
t = noise.shape[2]
# To allocate the temporal length of each stage, ensuring the sum == constant
max_units = 1 + (t - 1) // self.frame_per_unit
if is_sequence_parallel_initialized():
max_units_per_sample = torch.LongTensor([max_units]).to(device)
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
max_units_per_sample = all_to_all(max_units_per_sample.unsqueeze(1).repeat(1, sp_group_size), sp_group, sp_group_size, scatter_dim=1, gather_dim=0).squeeze(1)
max_units = min(max_units_per_sample.cpu().tolist())
num_units_per_stage = self.sample_stage_length(stages, max_units=max_units) # [The unit number of each stage]
# we needs to sync the length alloc of each sequence parallel group
if is_sequence_parallel_initialized():
num_units_per_stage = torch.LongTensor(num_units_per_stage).to(device)
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(num_units_per_stage, global_src_rank, group=get_sequence_parallel_group())
num_units_per_stage = num_units_per_stage.tolist()
height, width = noise.shape[-2], noise.shape[-1]
noise_list = [noise]
cur_noise = noise
for i_s in range(stages-1):
height //= 2;width //= 2
cur_noise = rearrange(cur_noise, 'b c t h w -> (b t) c h w')
cur_noise = F.interpolate(cur_noise, size=(height, width), mode='bilinear') * 2
cur_noise = rearrange(cur_noise, '(b t) c h w -> b c t h w', t=t)
noise_list.append(cur_noise)
noise_list = list(reversed(noise_list)) # make sure from low res to high res
# To calculate the batchsize and column size
batch_size = tot_samples // int(sum(sample_ratios))
column_size = int(sum(sample_ratios))
column_to_stage = {}
i_sum = 0
for i_s, column_num in enumerate(sample_ratios):
for index in range(i_sum, i_sum + column_num):
column_to_stage[index] = i_s
i_sum += column_num
noisy_latents_list = []
ratios_list = []
targets_list = []
timesteps_list = []
training_steps = self.scheduler.config.num_train_timesteps
# from low resolution to high resolution
for index in range(column_size):
# First prepare the trainable latent construction
i_s = column_to_stage[index]
clean_latent = latents_list[i_s][index::column_size] # [bs, c, t, h, w]
last_clean_latent = None if i_s == 0 else latents_list[i_s-1][index::column_size]
start_sigma = self.scheduler.start_sigmas[i_s]
end_sigma = self.scheduler.end_sigmas[i_s]
if i_s == 0:
start_point = noise_list[i_s][index::column_size]
else:
# Get the upsampled latent
last_clean_latent = rearrange(last_clean_latent, 'b c t h w -> (b t) c h w')
last_clean_latent = F.interpolate(last_clean_latent, size=(last_clean_latent.shape[-2] * 2, last_clean_latent.shape[-1] * 2), mode='nearest')
last_clean_latent = rearrange(last_clean_latent, '(b t) c h w -> b c t h w', t=t)
start_point = start_sigma * noise_list[i_s][index::column_size] + (1 - start_sigma) * last_clean_latent
if i_s == stages - 1:
end_point = clean_latent
else:
end_point = end_sigma * noise_list[i_s][index::column_size] + (1 - end_sigma) * clean_latent
# To sample a timestep
u = compute_density_for_timestep_sampling(
weighting_scheme='random',
batch_size=batch_size,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
indices = (u * training_steps).long() # Totally 1000 training steps per stage
indices = indices.clamp(0, training_steps-1)
timesteps = self.scheduler.timesteps_per_stage[i_s][indices].to(device=device)
ratios = self.scheduler.sigmas_per_stage[i_s][indices].to(device=device)
noise_ratios = ratios * start_sigma + (1 - ratios) * end_sigma
while len(ratios.shape) < start_point.ndim:
ratios = ratios.unsqueeze(-1)
# interpolate the latent
noisy_latents = ratios * start_point + (1 - ratios) * end_point
# The flow matching object
target_latents = start_point - end_point
# pad the noisy previous
num_units = num_units_per_stage[i_s]
num_units = min(num_units, 1 + (t - 1) // self.frame_per_unit)
actual_frames = 1 + (num_units - 1) * self.frame_per_unit
noisy_latents = noisy_latents[:, :, :actual_frames]
target_latents = target_latents[:, :, :actual_frames]
clean_latent = clean_latent[:, :, :actual_frames]
stage_noise = noise_list[i_s][index::column_size][:, :, :actual_frames]
# only the last latent takes part in training
noisy_latents = noisy_latents[:, :, -self.frame_per_unit:]
target_latents = target_latents[:, :, -self.frame_per_unit:]
last_cond_noisy_sigma = torch.rand(size=(batch_size,), device=device) * self.corrupt_ratio
if num_units == 1:
stage_input = [noisy_latents.to(dtype)]
else:
# add the random noise for the last cond clip
last_cond_latent = clean_latent[:, :, -(2*self.frame_per_unit):-self.frame_per_unit]
while len(last_cond_noisy_sigma.shape) < last_cond_latent.ndim:
last_cond_noisy_sigma = last_cond_noisy_sigma.unsqueeze(-1)
# We adding some noise to corrupt the clean condition
last_cond_latent = last_cond_noisy_sigma * torch.randn_like(last_cond_latent) + (1 - last_cond_noisy_sigma) * last_cond_latent
# concat the corrupted condition and the input noisy latents
stage_input = [noisy_latents.to(dtype), last_cond_latent.to(dtype)]
cur_unit_num = 2
cur_stage = i_s
while cur_unit_num < num_units:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_num += 1
cond_latents = latents_list[cur_stage][index::column_size][:, :, :actual_frames]
cond_latents = cond_latents[:, :, -(cur_unit_num * self.frame_per_unit) : -((cur_unit_num - 1) * self.frame_per_unit)]
cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents
stage_input.append(cond_latents.to(dtype))
if cur_stage == 0 and cur_unit_num < num_units:
cond_latents = latents_list[0][index::column_size][:, :, :actual_frames]
cond_latents = cond_latents[:, :, :-(cur_unit_num * self.frame_per_unit)]
cond_latents = last_cond_noisy_sigma * torch.randn_like(cond_latents) + (1 - last_cond_noisy_sigma) * cond_latents
stage_input.append(cond_latents.to(dtype))
stage_input = list(reversed(stage_input))
noisy_latents_list.append(stage_input)
ratios_list.append(ratios.to(dtype))
timesteps_list.append(timesteps.to(dtype))
targets_list.append(target_latents) # The standard rectified flow matching objective
return noisy_latents_list, ratios_list, timesteps_list, targets_list
@torch.no_grad()
def get_pyramid_latent(self, x, stage_num):
# x is the origin vae latent
vae_latent_list = []
vae_latent_list.append(x)
temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1]
for _ in range(stage_num):
height //= 2
width //= 2
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear')
x = rearrange(x, '(b t) c h w -> b c t h w', t=temp)
vae_latent_list.append(x)
vae_latent_list = list(reversed(vae_latent_list))
return vae_latent_list
@torch.no_grad()
def get_vae_latent(self, video, use_temporal_pyramid=True):
if self.load_vae:
assert video.shape[1] == 3, "The vae is loaded, the input should be raw pixels"
video = self.vae.encode(video).latent_dist.sample() # [b c t h w]
if video.shape[2] == 1:
# is image
video = (video - self.vae_shift_factor) * self.vae_scale_factor
else:
# is video
video[:, :, :1] = (video[:, :, :1] - self.vae_shift_factor) * self.vae_scale_factor
video[:, :, 1:] = (video[:, :, 1:] - self.vae_video_shift_factor) * self.vae_video_scale_factor
# Get the pyramidal stages
vae_latent_list = self.get_pyramid_latent(video, len(self.stages) - 1)
if use_temporal_pyramid:
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise_with_temporal_pyramid(vae_latent_list, self.sample_ratios)
else:
# Only use the spatial pyramidal (without temporal ar)
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.add_pyramid_noise(vae_latent_list, self.sample_ratios)
return noisy_latents_list, ratios_list, timesteps_list, targets_list
@torch.no_grad()
def get_text_embeddings(self, text, rand_idx, device):
if self.load_text_encoder:
batch_size = len(text) # Text is a str list
for idx in range(batch_size):
if rand_idx[idx].item():
text[idx] = ''
return self.text_encoder(text, device) # [b s c]
else:
batch_size = len(text['prompt_embeds'])
for idx in range(batch_size):
if rand_idx[idx].item():
text['prompt_embeds'][idx] = self.null_text_embeds['prompt_embed'].to(device)
text['prompt_attention_mask'][idx] = self.null_text_embeds['prompt_attention_mask'].to(device)
text['pooled_prompt_embeds'][idx] = self.null_text_embeds['pooled_prompt_embed'].to(device)
return text['prompt_embeds'], text['prompt_attention_mask'], text['pooled_prompt_embeds']
def calculate_loss(self, model_preds_list, targets_list):
loss_list = []
for model_pred, target in zip(model_preds_list, targets_list):
# Compute the loss.
loss_weight = torch.ones_like(target)
loss = torch.mean(
(loss_weight.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss_list.append(loss)
diffusion_loss = torch.cat(loss_list, dim=0).mean()
if self.return_log:
log = {}
split="train"
log[f'{split}/loss'] = diffusion_loss.detach()
return diffusion_loss, log
else:
return diffusion_loss, {}
def __call__(self, video, text, identifier=['video'], use_temporal_pyramid=True, accelerator: Accelerator=None):
xdim = video.ndim
device = video.device
if 'video' in identifier:
assert 'image' not in identifier
is_image = False
else:
assert 'video' not in identifier
video = video.unsqueeze(2) # 'b c h w -> b c 1 h w'
is_image = True
# TODO: now have 3 stages, firstly get the vae latents
with torch.no_grad(), accelerator.autocast():
# 10% prob drop the text
batch_size = len(video)
rand_idx = torch.rand((batch_size,)) <= self.cfg_rate
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.get_text_embeddings(text, rand_idx, device)
noisy_latents_list, ratios_list, timesteps_list, targets_list = self.get_vae_latent(video, use_temporal_pyramid=use_temporal_pyramid)
timesteps = torch.cat([timestep.unsqueeze(-1) for timestep in timesteps_list], dim=-1)
timesteps = timesteps.reshape(-1)
assert timesteps.shape[0] == prompt_embeds.shape[0]
# DiT forward
model_preds_list = self.dit(
sample=noisy_latents_list,
timestep_ratio=timesteps,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
# calculate the loss
return self.calculate_loss(model_preds_list, targets_list)
def prepare_latents(
self,
batch_size,
num_channels_latents,
temp,
height,
width,
dtype,
device,
generator,
):
shape = (
batch_size,
num_channels_latents,
int(temp),
int(height) // self.downsample,
int(width) // self.downsample,
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def sample_block_noise(self, bs, ch, temp, height, width):
gamma = self.scheduler.config.gamma
dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma)
block_number = bs * ch * temp * (height // 2) * (width // 2)
noise = torch.stack([dist.sample() for _ in range(block_number)]) # [block number, 4]
noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2)
return noise
@torch.no_grad()
def generate_one_unit(
self,
latents,
past_conditions, # List of past conditions, contains the conditions of each stage
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
temp,
device,
dtype,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
is_first_frame: bool = False,
):
stages = self.stages
intermed_latents = []
for i_s in range(len(stages)):
self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device)
timesteps = self.scheduler.timesteps
if i_s > 0:
height *= 2; width *= 2
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
latents = F.interpolate(latents, size=(height, width), mode='nearest')
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
# Fix the stage
ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s] # the original coeff of signal
gamma = self.scheduler.config.gamma
alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)
beta = alpha * (1 - ori_sigma) / math.sqrt(gamma)
bs, ch, temp, height, width = latents.shape
noise = self.sample_block_noise(bs, ch, temp, height, width)
noise = noise.to(device=device, dtype=dtype)
latents = alpha * latents + beta * noise # To fix the block artifact
for idx, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
if is_sequence_parallel_initialized():
# sync the input latent
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(latent_model_input, global_src_rank, group=get_sequence_parallel_group())
latent_model_input = past_conditions[i_s] + [latent_model_input]
noise_pred = self.dit(
sample=[latent_model_input],
timestep_ratio=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
noise_pred = noise_pred[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if is_first_frame:
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
model_output=noise_pred,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
intermed_latents.append(latents)
return intermed_latents
@torch.no_grad()
def generate_i2v(
self,
prompt: Union[str, List[str]] = '',
input_image: PIL.Image = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 4.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
cpu_offloading: bool = False, # If true, reload device will be cuda.
inference_multigpu: bool = False,
callback: Optional[Callable[[int, int, Dict], None]] = None,
):
if self.sequential_offload_enabled and not cpu_offloading:
print("Warning: overriding cpu_offloading set to false, as it's needed for sequential cpu offload")
cpu_offloading=True
device = self.device if not cpu_offloading else torch.device("cuda")
dtype = self.dtype
if cpu_offloading:
# skip caring about the text encoder here as its about to be used anyways.
if not self.sequential_offload_enabled:
if str(self.dit.device) != "cpu":
print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.dit.to("cpu")
torch.cuda.empty_cache()
if str(self.vae.device) != "cpu":
print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.vae.to("cpu")
torch.cuda.empty_cache()
width = input_image.width
height = input_image.height
assert temp % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
if cpu_offloading and not self.sequential_offload_enabled:
self.text_encoder.to("cuda")
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if cpu_offloading:
if not self.sequential_offload_enabled:
self.text_encoder.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
if use_linear_guidance:
max_guidance_scale = guidance_scale
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp+1)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
if is_sequence_parallel_initialized():
# sync the prompt embedding across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(pooled_prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(prompt_attention_mask, global_src_rank, group=get_sequence_parallel_group())
# Create the initial random noise
num_channels_latents = (self.dit.config.in_channels // 4) if self.model_name == "pyramid_flux" else self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by defalut, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = temp // self.frame_per_unit
stages = self.stages
# encode the image latents
image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])
input_image_tensor = image_transform(input_image).unsqueeze(0).unsqueeze(2) # [b c 1 h w]
input_image_latent = (self.vae.encode(input_image_tensor.to(self.vae.device, dtype=self.vae.dtype)).latent_dist.sample() - self.vae_shift_factor) * self.vae_scale_factor # [b c 1 h w]
if is_sequence_parallel_initialized():
# sync the image latent across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(input_image_latent, global_src_rank, group=get_sequence_parallel_group())
generated_latents_list = [input_image_latent] # The generated results
last_generated_latents = input_image_latent
if cpu_offloading:
self.vae.to("cpu")
if not self.sequential_offload_enabled:
self.dit.to("cuda")
torch.cuda.empty_cache()
for unit_index in tqdm(range(1, num_units)):
gc.collect()
torch.cuda.empty_cache()
if callback:
callback(unit_index, num_units)
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-self.frame_per_unit:]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:,(unit_index - 1) * self.frame_per_unit:unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
if cpu_offloading:
if not self.sequential_offload_enabled:
self.dit.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
image = self.decode_latent(generated_latents, save_memory=save_memory, inference_multigpu=inference_multigpu)
if cpu_offloading:
self.vae.to("cpu")
torch.cuda.empty_cache()
# not technically necessary, but returns the pipeline to its original state
return image
@torch.no_grad()
def generate(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
video_num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 7.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
cpu_offloading: bool = False, # If true, reload device will be cuda.
inference_multigpu: bool = False,
callback: Optional[Callable[[int, int, Dict], None]] = None,
):
if self.sequential_offload_enabled and not cpu_offloading:
print("Warning: overriding cpu_offloading set to false, as it's needed for sequential cpu offload")
cpu_offloading=True
device = self.device if not cpu_offloading else torch.device("cuda")
dtype = self.dtype
if cpu_offloading:
# skip caring about the text encoder here as its about to be used anyways.
if not self.sequential_offload_enabled:
if str(self.dit.device) != "cpu":
print("(dit) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.dit.to("cpu")
torch.cuda.empty_cache()
if str(self.vae.device) != "cpu":
print("(vae) Warning: Do not preload pipeline components (i.e. to cuda) with cpu offloading enabled! Otherwise, a second transfer will occur needlessly taking up time.")
self.vae.to("cpu")
torch.cuda.empty_cache()
assert (temp - 1) % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
if isinstance(video_num_inference_steps, int):
video_num_inference_steps = [video_num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
if cpu_offloading and not self.sequential_offload_enabled:
self.text_encoder.to("cuda")
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if cpu_offloading:
if not self.sequential_offload_enabled:
self.text_encoder.to("cpu")
self.dit.to("cuda")
torch.cuda.empty_cache()
if use_linear_guidance:
max_guidance_scale = guidance_scale
# guidance_scale_list = torch.linspace(max_guidance_scale, min_guidance_scale, temp).tolist()
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
if is_sequence_parallel_initialized():
# sync the prompt embedding across multiple GPUs
sp_group_rank = get_sequence_parallel_group_rank()
global_src_rank = sp_group_rank * get_sequence_parallel_world_size()
torch.distributed.broadcast(prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(pooled_prompt_embeds, global_src_rank, group=get_sequence_parallel_group())
torch.distributed.broadcast(prompt_attention_mask, global_src_rank, group=get_sequence_parallel_group())
# Create the initial random noise
num_channels_latents = (self.dit.config.in_channels // 4) if self.model_name == "pyramid_flux" else self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by default, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = 1 + (temp - 1) // self.frame_per_unit
stages = self.stages
generated_latents_list = [] # The generated results
last_generated_latents = None
for unit_index in tqdm(range(num_units)):
gc.collect()
torch.cuda.empty_cache()
if callback:
callback(unit_index, num_units)
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
if unit_index == 0:
past_condition_latents = [[] for _ in range(len(stages))]
intermed_latents = self.generate_one_unit(
latents[:,:,:1],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
1,
device,
dtype,
generator,
is_first_frame=True,
)
else:
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-(self.frame_per_unit):]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:, 1 + (unit_index - 1) * self.frame_per_unit:1 + unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
video_num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
if cpu_offloading:
if not self.sequential_offload_enabled:
self.dit.to("cpu")
self.vae.to("cuda")
torch.cuda.empty_cache()
image = self.decode_latent(generated_latents, save_memory=save_memory, inference_multigpu=inference_multigpu)
if cpu_offloading:
self.vae.to("cpu")
torch.cuda.empty_cache()
# not technically necessary, but returns the pipeline to its original state
return image
def decode_latent(self, latents, save_memory=True, inference_multigpu=False):
# only the main process needs vae decoding
if inference_multigpu and get_rank() != 0:
return None
if latents.shape[2] == 1:
latents = (latents / self.vae_scale_factor) + self.vae_shift_factor
else:
latents[:, :, :1] = (latents[:, :, :1] / self.vae_scale_factor) + self.vae_shift_factor
latents[:, :, 1:] = (latents[:, :, 1:] / self.vae_video_scale_factor) + self.vae_video_shift_factor
if save_memory:
# reducing the tile size and temporal chunk window size
image = self.vae.decode(latents, temporal_chunk=True, window_size=1, tile_sample_min_size=256).sample
else:
image = self.vae.decode(latents, temporal_chunk=True, window_size=2, tile_sample_min_size=512).sample
image = image.mul(127.5).add(127.5).clamp(0, 255).byte()
image = rearrange(image, "B C T H W -> (B T) H W C")
image = image.cpu().numpy()
image = self.numpy_to_pil(image)
return image
@staticmethod
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@property
def device(self):
return next(self.dit.parameters()).device
@property
def dtype(self):
return next(self.dit.parameters()).dtype
@property
def guidance_scale(self):
return self._guidance_scale
@property
def video_guidance_scale(self):
return self._video_guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 0
|