Spaces:
Runtime error
Runtime error
File size: 11,102 Bytes
f718ab7 467e456 f718ab7 b8e70f4 795ed6e 114c669 f718ab7 467e456 f718ab7 467e456 f718ab7 467e456 b8e70f4 467e456 b8e70f4 79c819f b8e70f4 f718ab7 114c669 f718ab7 114c669 f718ab7 b8e70f4 f718ab7 b8e70f4 f718ab7 b8e70f4 f718ab7 b8e70f4 f718ab7 b8e70f4 114c669 b8e70f4 f718ab7 114c669 f718ab7 467e456 795ed6e 467e456 b8e70f4 79c819f f718ab7 114c669 467e456 f718ab7 467e456 f718ab7 114c669 b8e70f4 467e456 f718ab7 467e456 795ed6e f718ab7 79c819f f718ab7 795ed6e f718ab7 795ed6e b8e70f4 795ed6e f718ab7 79c819f b8e70f4 f718ab7 795ed6e f718ab7 795ed6e f718ab7 795ed6e f718ab7 d2f4d51 f718ab7 795ed6e f718ab7 b8e70f4 114c669 467e456 f718ab7 795ed6e d2f4d51 b8e70f4 582e4c7 f718ab7 b8e70f4 f718ab7 114c669 f718ab7 467e456 f718ab7 467e456 795ed6e b8e70f4 795ed6e d2f4d51 f718ab7 582e4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
from ultralytics import YOLO #行人识别,采用YoloV8模型
import math #用于四舍五入取整
import cv2 #opencv图像处理库
import cvzone #在图像上绘画
import numpy as np
import gradio as gr #GUI界面
import tempfile #创建输出临时文件夹
import os
from detectMotion import * #单独的运动检测
import time
import deep_sort.deep_sort.deep_sort as ds
#导入YoloV8模型,模型名称存储在model_list.txt中
with open("model_list.txt") as file:
lines = file.readlines()
model_list = [line.rstrip() for line in lines] #逐行导入
#用于人流量统计
number_of_people_in_one_frame_list = []
#YoloV8官方模型标签数据,本次项目只使用了'person'
classNames=['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors',
'teddy bear', 'hair drier', 'toothbrush']
#实时显示人流量统计图表
def plot_number():
global number_of_people_in_one_frame_list
plt.close()
fig = plt.figure()
plt.xlabel('Second')
plt.ylabel('Traffic')
plt.grid(linestyle='--', alpha=0.3, linewidth=2)
plt.plot(number_of_people_in_one_frame_list)
return fig
# 彩色图像进行自适应直方图均衡化
def hisEqulColor(img):
fig_preprocessed = image_histogram(img)
## 将RGB图像转换到YCrCb空间中
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
# 将YCrCb图像通道分离
channels = cv2.split(ycrcb)
# 以下代码详细注释见官网:
# https://docs.opencv.org/4.1.0/d5/daf/tutorial_py_histogram_equalization.html
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
clahe.apply(channels[0], channels[0])
cv2.merge(channels, ycrcb)
cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2BGR, img)
fig_postprocessed = image_histogram(img)
return img, fig_preprocessed, fig_postprocessed
#添加高斯噪声
def AddGaussNoise(img,sigma):
gauss=np.random.normal(0,sigma,img.shape)
img=np.uint8(img + gauss)#将高斯噪声与原始图像叠加
#img=cv2.medianBlur(img,5)
return img
#图像超分
def AddISR(img):
sr = cv2.dnn_superres.DnnSuperResImpl_create()
sr.readModel("EDSR_x4.pb")
sr.setModel("edsr", 4) # set the model by passing the value and the upsampling ratio
result = sr.upsample(img) # upscale the input image
return result
#图像处理
def processImg(img,sigma,median_filter,ISR):
img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR)
res1 = AddGaussNoise(img,sigma)
if median_filter == True:
#中值滤波降噪
img=cv2.medianBlur(img,5)
res1, fig1, fig2 = hisEqulColor(res1)
if ISR == True:
res1 = AddISR(res1)
res1=cv2.cvtColor(res1,cv2.COLOR_BGR2RGB)
return res1, fig1, fig2
#视频处理
def processVideo(inputPath, codec, model):
global number_of_people_in_one_frame_list
tracker = ds.DeepSort('deep_sort/deep_sort/deep/checkpoint/ckpt.t7')
if inputPath == None:
raise gr.Error("请先上传视频")
model=YOLO(model)
number_of_people_in_one_frame = 0
number_of_people_in_one_frame_list = []
number_of_people = 0
sum_of_frame = 0
cap = cv2.VideoCapture(inputPath)#从inputPath读入视频
fps = cap.get(cv2.CAP_PROP_FPS) #获取视频的帧率
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))#获取视频的大小
output_viedo = cv2.VideoWriter()#初始化视频写入
outputPath=tempfile.mkdtemp()#创建输出视频的临时文件夹的路径
#输出格式
if codec == "mp4":
#h264:avc1,此处为了兼容性换成mp4v
fourcc = cv2.VideoWriter_fourcc('m','p','4','v')#视频编码:mp4v,此编码不需要openh264-1.8.0-win64.dll
video_save_path = os.path.join(outputPath,"output.mp4")#创建输出视频路径
elif codec == "avi":
fourcc = cv2.VideoWriter_fourcc('h','2','6','4')#视频编码:h264,只能保存为avi格式,本地运行时不能在浏览器播放
video_save_path = os.path.join(outputPath,"output.avi")#创建输出视频路径
elif codec == "mkv":
fourcc = cv2.VideoWriter_fourcc('X','V','I','D')#视频编码:XVID,此编码不需要openh264-1.8.0-win64.dll
video_save_path = os.path.join(outputPath,"output.mkv")#创建输出视频路径
elif codec == "wmv":
fourcc = cv2.VideoWriter_fourcc('X','V','I','D')#视频编码:XVID,此编码不需要openh264-1.8.0-win64.dll
video_save_path = os.path.join(outputPath,"output.wmv")#创建输出视频路径
elif codec == "mp4(h264)":
#h264:avc1, 在本地运行时可以在浏览器播放
fourcc = cv2.VideoWriter_fourcc('a','v','c','1')#视频编码:h264,本地运行时可直接在浏览器播放
video_save_path = os.path.join(outputPath,"output_h264.mp4")#创建输出视频路径
output_viedo.open(video_save_path , fourcc, fps, size, True)
#对每一帧图片进行读取和处理
while True:
ret, img = cap.read()#将每一帧图片读取到img当中
results=model(img,stream=True)#使用YoloV8模型进行推理
detections=np.empty((0, 4))#初始化运动检测
confarray = []
if not(ret):#当视频全部读完,ret返回false,终止循环,视频帧读取和写入结束
break
img, __, __= hisEqulColor(img)#视频增强
#读取推理的数据
for r in results:
boxes=r.boxes
for box in boxes:
#读取每一帧识别出的边界信息,并显示
x1,y1,x2,y2=box.xywh[0]
x1,y1,x2,y2=int(x1),int(y1),int(x2),int(y2)#将tensor类型转变为整型
conf=math.ceil(box.conf[0]*100)/100#对conf取2位小数
cls=int(box.cls[0])#获取物体类别标签
#只检测人
if cls==0:
number_of_people_in_one_frame += 1
currentArray=np.array([x1,y1,x2,y2])
confarray.append(conf)
detections=np.vstack((detections,currentArray))#按行堆叠数据
sum_of_frame += 1
if sum_of_frame % fps == 0:
number_of_people_in_one_frame_list.append(number_of_people_in_one_frame)
number_of_people_in_one_frame = 0
#运动检测
resultsTracker=tracker.update(detections, confarray, img)
for result in resultsTracker:
x1,y1,x2,y2,Id=result
number_of_people=max(str(int(Id)),str(number_of_people))
x1,y1,x2,y2=int(x1),int(y1),int(x2),int(y2)#将浮点数转变为整型
cv2.rectangle(img,(x1,y1),(x2,y2),(255,0,255),3)
cvzone.putTextRect(img,f'{int(Id)}',(max(-10,x1),max(40,y1)),scale=1.3,thickness=2)
#image_np = np.squeeze(img.render())#用np.squeeze将输出结果降维
output_viedo.write(img)#将处理后的图像写入视频
output_viedo.release()#释放
cap.release()#释放
return video_save_path,video_save_path,number_of_people
#人流量显示
def change_total_visible(value):
if value == True:
return gr.update(visible = True)
if value == False:
return gr.update(visible = False)
#WebUi图形界面(block)
with gr.Blocks() as demo:
gr.Markdown("""
# 运动检测与行人跟踪
基于opencv + yoloV8 + deepsort
""")
with gr.Tab("视频识别"):
with gr.Row():
with gr.Column():
text_inputPath = gr.Video()
codec = gr.Radio(["mp4","avi","mkv","wmv",'mp4(h264)'], label="输出视频格式",
value="mp4")
model = gr.Dropdown(model_list, value="yolov8n.pt", label="模型", info="模型列表存储在model_list.txt中")
videoProcess_button = gr.Button("处理")
with gr.Column():
text_output = gr.Video()
text_output_path = gr.Text(label="输出路径")
total_ID = gr.Text(label="总人数")
total_visible = gr.Checkbox(label="显示人流量")
with gr.Row():
with gr.Column():
figure_number_output = gr.Plot(label="人流量", visible=False)
with gr.Tab("图像增强"):
with gr.Row():
with gr.Column():
image_input = gr.Image()
image_sigma = gr.Slider(0,40,label="高斯噪声sigma")
median_filter = gr.Checkbox(label="中值滤波")
Add_ISR = gr.Checkbox(label="图像超分")
image_output = gr.Image()
with gr.Column():
figure_pre_output = gr.Plot(label="处理前直方图")
figure_post_output = gr.Plot(label="处理后直方图")
image_button = gr.Button("处理")
with gr.Tab("运动检测"):
with gr.Column():
with gr.Row():
with gr.Column():
motion_inputPath = gr.Video()
motionProcess_button = gr.Button("处理")
motion_output_frame = gr.Video()
motion_output_fmask = gr.Video()
with gr.Column():
frame_output_path = gr.Text(label="frame输出路径")
fmask_output_path = gr.Text(label="mask输出路径")
with gr.Accordion("算法:"):
gr.Markdown("高斯混合模型(GMM)")
videoProcess_button.click(processVideo, inputs=[text_inputPath, codec, model],
outputs=[text_output,text_output_path, total_ID])
image_button.click(processImg, inputs=[image_input,image_sigma,median_filter,Add_ISR],
outputs=[image_output,figure_pre_output,figure_post_output])
motionProcess_button.click(motionDetection, inputs=[motion_inputPath],
outputs=[motion_output_frame,motion_output_fmask,
frame_output_path,fmask_output_path])
videoProcess_button.click(plot_number,outputs=figure_number_output,every=2)
total_visible.change(change_total_visible,total_visible, figure_number_output )
demo.queue()#当有多个请求时,排队
demo.launch()#生成内网链接,如需要公网链接,括号内输入share=True
#server_port=6006
|