File size: 4,198 Bytes
77e70e4
3959f99
77e70e4
 
 
 
 
 
 
 
 
3959f99
 
 
 
 
77e70e4
 
 
 
3959f99
77e70e4
 
 
 
3959f99
 
 
77e70e4
 
3959f99
 
 
 
77e70e4
 
 
3959f99
77e70e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3959f99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e70e4
 
3959f99
 
 
77e70e4
 
 
 
 
c83f530
77e70e4
 
 
 
 
 
 
3959f99
 
77e70e4
 
 
 
3959f99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import requests
import numpy as np
import arxiv
from langchain.utilities import ArxivAPIWrapper
import os
from dotenv import load_dotenv

load_dotenv() 

HF_API_TOKEN = os.environ.get('HF_API_TOKEN')
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}

summarizer_model_name = "microsoft/Phi-3-mini-4k-instruct"
feature_extractor_model_name = "ml6team/keyphrase-extraction-kbir-inspec"
ranker_model_name = "sentence-transformers/all-MiniLM-L6-v2"

def hf_api_call(model_name, payload):
    API_URL = f"https://api-inference.huggingface.co/models/{model_name}"
    response = requests.post(API_URL, headers=HEADERS, json=payload)
    return response.json()

def extract_keywords(abstract):
    payload = {"inputs": abstract}
    result = hf_api_call(feature_extractor_model_name, payload)
    keyphrases = np.unique([item['word'].strip() for item in result])
    print(keyphrases)
    return keyphrases

def search_papers(keywords, n_papers):
    arxiv_agent = ArxivAPIWrapper(top_k_results=n_papers, doc_content_chars_max=None, load_max_docs=n_papers+3)
    query = " ".join(keywords)
    results = arxiv_agent.get_summaries_as_docs(query)
    return results

def re_rank_papers(query_abstract, papers, n_papers):
    summaries = {paper.page_content: {"Title": paper.metadata['Title']} for paper in papers}
    summ_list = []

    payload = {
        "inputs": {
            "source_sentence": query_abstract,
            "sentences": list(summaries.keys())
        }
    }
    result = hf_api_call(ranker_model_name, payload)

    for i, key in enumerate(summaries.keys()):
        summ_list.append((key, summaries[key]["Title"], result[i]))
        print((key, summaries[key]["Title"], result[i]))
    summ_list = sorted(summ_list, key=lambda x: x[2], reverse=True)
    summaries = {}
    for i in range(n_papers) :
        summaries[summ_list[i][0]] = {
            "Title" : summ_list[i][1],
            "score" : summ_list[i][2]
        }
    return summaries

def format_abstracts_as_references(papers):
    cite_text = ""
    i = 0
    for key in papers.keys() :
        citation = f"{i+1}"
        cite_text = f"{cite_text}[{citation}]: {key}\n"
        i+=1
    return cite_text

def format_authors(authors):
    formatted_authors = []
    for author in authors:
        name_parts = author.name.split()
        last_name = name_parts[-1]
        initials = ''.join([name[0] for name in name_parts[:-1]])
        formatted_authors.append(f"{last_name} {initials}")
    return ', '.join(formatted_authors)

def to_vancouver_style(entry):
    authors = format_authors(entry.authors)
    title = entry.title
    journal = 'arXiv'
    year = entry.published.year
    arxiv_id = entry.get_short_id()
    return f"{authors}. {title}. {journal}. {year}. arXiv:{arxiv_id}"

def generate_refs(papers) :
    client = arxiv.Client()
    results = []
    for key in papers.keys() :
        search = arxiv.Search(
          query = papers[key]["Title"],
          max_results = 1,
          sort_by = arxiv.SortCriterion.Relevance
        )
        results.append(list(client.results(search))[0])
        
    references = [to_vancouver_style(entry) for entry in results]
    ids = [entry.get_short_id() for entry in results]
    i = 0
    refs = "\n\nReferences:\n"
    for reference in references:
        refs = f"{refs}[{i+1}] {reference}\n"
        i+=1
    return refs, ids


def generate_related_work(query_abstract, ranked_papers, base_prompt, sentence_plan, n_words):
    data = f"Abstract: {query_abstract} \n {format_abstracts_as_references(ranked_papers)} \n Plan: {sentence_plan}"
    complete_prompt = f"{base_prompt}\n```{data}```"
    
    payload = {
        "inputs": complete_prompt,
        "parameters": {
            "max_new_tokens": n_words,
            "temperature": 0.01,
            "return_full_text": False,
            "do_sample": False
        }
    }
    
    result = hf_api_call(summarizer_model_name, payload)
    print(result)
    related_work = result[0]['generated_text']
    refs, ids = generate_refs(ranked_papers)
    related_work += refs
    
    with open("literature review.txt", "w") as f:
        f.write(related_work)
    
    return related_work, ids