File size: 1,919 Bytes
ebd6079 442b62f ebd6079 442b62f a1d5d83 442b62f a1d5d83 442b62f a1d5d83 442b62f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import streamlit as st
import numpy as np
import pandas as pd
st.set_page_config(layout="wide")
st.header("HuggingFace 🤗 Posts leaderboard")
st.write(
"""Data Source: https://huggingface.co/datasets/maxiw/hf-posts"""
)
df = pd.read_json("hf://datasets/maxiw/hf-posts/posts.jsonl", lines=True)
df["publishedAt"] = pd.to_datetime(df.publishedAt)
# print(df.columns)
# Define the metrics
metrics = ["totalUniqueImpressions", "totalReactions", "numComments", "Num of posts"]
# Get min and max dates from the DataFrame
min_date = df["publishedAt"].min().to_pydatetime()
max_date = df["publishedAt"].max().to_pydatetime()
# Create columns for the slider and the selectbox
col1, col2 = st.columns([3, 1]) # Adjust the width ratio as needed
with col1:
date_range = st.slider(
"Select Date Range",
min_value=min_date,
max_value=max_date,
value=(min_date, max_date),
format="DD/MMM/YYYY",
)
with col2:
selected_metric = st.selectbox(
"Sort by:",
options=metrics,
index=0,
)
# Filter the DataFrame based on selected date range
mask = df["publishedAt"].between(*date_range)
df = df[mask]
df["Name"] = df.author.apply(lambda x: x["fullname"])
df["username"] = df.author.apply(lambda x: x["name"])
df["totalReactions"] = df.reactions.apply(lambda x: sum([_["count"] for _ in x]))
df["Num of posts"] = 1
data = (
df.groupby(["username", "Name"])[metrics]
.sum()
.sort_values(selected_metric, ascending=False)
.reset_index()
)
data.index = np.arange(1, len(data) + 1)
data.index.name = "Rank"
def make_clickable(val):
return f'<a target="_blank" href="https://huggingface.co/{val}">{val}</a>'
df_styled = data.style.format({"username": make_clickable})
st.write(
f"""<center>{df_styled.to_html(escape=False, index=False)}""",
unsafe_allow_html=True,
)
# st.dataframe(data=df_styled, width=100_000)
|