File size: 1,919 Bytes
ebd6079
442b62f
 
ebd6079
442b62f
 
 
 
 
a1d5d83
442b62f
 
 
 
 
a1d5d83
 
 
 
 
442b62f
 
 
 
 
a1d5d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442b62f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import streamlit as st
import numpy as np
import pandas as pd

st.set_page_config(layout="wide")

st.header("HuggingFace 🤗 Posts leaderboard")

st.write(
    """Data Source: https://huggingface.co/datasets/maxiw/hf-posts"""
)

df = pd.read_json("hf://datasets/maxiw/hf-posts/posts.jsonl", lines=True)

df["publishedAt"] = pd.to_datetime(df.publishedAt)
# print(df.columns)

# Define the metrics
metrics = ["totalUniqueImpressions", "totalReactions", "numComments", "Num of posts"]


# Get min and max dates from the DataFrame
min_date = df["publishedAt"].min().to_pydatetime()
max_date = df["publishedAt"].max().to_pydatetime()

# Create columns for the slider and the selectbox
col1, col2 = st.columns([3, 1])  # Adjust the width ratio as needed

with col1:
    date_range = st.slider(
        "Select Date Range",
        min_value=min_date,
        max_value=max_date,
        value=(min_date, max_date),
        format="DD/MMM/YYYY",
    )

with col2:
    selected_metric = st.selectbox(
        "Sort by:",
        options=metrics,
        index=0,
    )


# Filter the DataFrame based on selected date range
mask = df["publishedAt"].between(*date_range)
df = df[mask]


df["Name"] = df.author.apply(lambda x: x["fullname"])
df["username"] = df.author.apply(lambda x: x["name"])
df["totalReactions"] = df.reactions.apply(lambda x: sum([_["count"] for _ in x]))
df["Num of posts"] = 1
data = (
    df.groupby(["username", "Name"])[metrics]
    .sum()
    .sort_values(selected_metric, ascending=False)
    .reset_index()
)
data.index = np.arange(1, len(data) + 1)
data.index.name = "Rank"


def make_clickable(val):
    return f'<a target="_blank" href="https://huggingface.co/{val}">{val}</a>'


df_styled = data.style.format({"username": make_clickable})
st.write(
    f"""<center>{df_styled.to_html(escape=False, index=False)}""",
    unsafe_allow_html=True,
)


# st.dataframe(data=df_styled, width=100_000)