Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,090 Bytes
3860ffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 |
import gradio as gr
import argparse
import os, subprocess
from shutil import rmtree
import numpy as np
import cv2
import librosa
import torch
from utils.audio_utils import *
from utils.inference_utils import *
from sync_models.gestsync_models import *
import sys
if sys.version_info > (3, 0): long, unicode, basestring = int, str, str
from tqdm import tqdm
from scipy.io.wavfile import write
import mediapipe as mp
from protobuf_to_dict import protobuf_to_dict
mp_holistic = mp.solutions.holistic
from ultralytics import YOLO
from decord import VideoReader, cpu
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# Set the path to checkpoint file
CHECKPOINT_PATH = "model_rgb.pth"
# Initialize global variables
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
use_cuda = torch.cuda.is_available()
n_negative_samples = 100
print("Using CUDA: ", use_cuda, device)
def preprocess_video(path, result_folder, apply_preprocess, padding=20):
'''
This function preprocesses the input video to extract the audio and crop the frames using YOLO model
Args:
- path (string) : Path of the input video file
- result_folder (string) : Path of the folder to save the extracted audio and cropped video
- padding (int) : Padding to add to the bounding box
Returns:
- wav_file (string) : Path of the extracted audio file
- fps (int) : FPS of the input video
- video_output (string) : Path of the cropped video file
- msg (string) : Message to be returned
'''
# Load all video frames
try:
vr = VideoReader(path, ctx=cpu(0))
fps = vr.get_avg_fps()
frame_count = len(vr)
except:
msg = "Oops! Could not load the video. Please check the input video and try again."
return None, None, None, msg
if frame_count < 25:
msg = "Not enough frames to process! Please give a longer video as input"
return None, None, None, msg
# Extract the audio from the input video file using ffmpeg
wav_file = os.path.join(result_folder, "audio.wav")
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -async 1 -ac 1 -vn \
-acodec pcm_s16le -ar 16000 %s -y' % (path, wav_file), shell=True)
if status != 0:
msg = "Oops! Could not load the audio file. Please check the input video and try again."
return None, None, None, msg
print("Extracted the audio from the video")
if apply_preprocess=="True":
all_frames = []
for k in range(len(vr)):
all_frames.append(vr[k].asnumpy())
all_frames = np.asarray(all_frames)
print("Extracted the frames for pre-processing")
# Load YOLOv9 model (pre-trained on COCO dataset)
yolo_model = YOLO("yolov9s.pt")
print("Loaded the YOLO model")
person_videos = {}
person_tracks = {}
print("Processing the frames...")
for frame_idx in tqdm(range(frame_count)):
frame = all_frames[frame_idx]
# Perform person detection
results = yolo_model(frame, verbose=False)
detections = results[0].boxes
for i, det in enumerate(detections):
x1, y1, x2, y2 = det.xyxy[0]
cls = det.cls[0]
if int(cls) == 0: # Class 0 is 'person' in COCO dataset
x1 = max(0, int(x1) - padding)
y1 = max(0, int(y1) - padding)
x2 = min(frame.shape[1], int(x2) + padding)
y2 = min(frame.shape[0], int(y2) + padding)
if i not in person_videos:
person_videos[i] = []
person_tracks[i] = []
person_videos[i].append(frame)
person_tracks[i].append([x1,y1,x2,y2])
num_persons = 0
for i in person_videos.keys():
if len(person_videos[i]) >= frame_count//2:
num_persons+=1
if num_persons==0:
msg = "No person detected in the video! Please give a video with one person as input"
return None, None, None, msg
if num_persons>1:
msg = "More than one person detected in the video! Please give a video with only one person as input"
return None, None, None, msg
# For the person detected, crop the frame based on the bounding box
if len(person_videos[0]) > frame_count-10:
crop_filename = os.path.join(result_folder, "preprocessed_video.avi")
fourcc = cv2.VideoWriter_fourcc(*'DIVX')
# Get bounding box coordinates based on person_tracks[i]
max_x1 = min([track[0] for track in person_tracks[0]])
max_y1 = min([track[1] for track in person_tracks[0]])
max_x2 = max([track[2] for track in person_tracks[0]])
max_y2 = max([track[3] for track in person_tracks[0]])
max_width = max_x2 - max_x1
max_height = max_y2 - max_y1
out = cv2.VideoWriter(crop_filename, fourcc, fps, (max_width, max_height))
for frame in person_videos[0]:
crop = frame[max_y1:max_y2, max_x1:max_x2]
crop = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
out.write(crop)
out.release()
no_sound_video = crop_filename.split('.')[0] + '_nosound.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (crop_filename, no_sound_video), shell=True)
if status != 0:
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
return None, None, None, msg
video_output = crop_filename.split('.')[0] + '.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 %s' %
(wav_file , no_sound_video, video_output), shell=True)
if status != 0:
msg = "Oops! Could not preprocess the video. Please check the input video and try again."
return None, None, None, msg
os.remove(crop_filename)
os.remove(no_sound_video)
print("Successfully saved the pre-processed video: ", video_output)
else:
msg = "Could not track the person in the full video! Please give a single-speaker video as input"
return None, None, None, msg
else:
video_output = path
return wav_file, fps, video_output, "success"
def resample_video(video_file, video_fname, result_folder):
'''
This function resamples the video to 25 fps
Args:
- video_file (string) : Path of the input video file
- video_fname (string) : Name of the input video file
- result_folder (string) : Path of the folder to save the resampled video
Returns:
- video_file_25fps (string) : Path of the resampled video file
'''
video_file_25fps = os.path.join(result_folder, '{}.mp4'.format(video_fname))
# Resample the video to 25 fps
command = ("ffmpeg -hide_banner -loglevel panic -y -i {} -q:v 1 -filter:v fps=25 {}".format(video_file, video_file_25fps))
from subprocess import call
cmd = command.split(' ')
print('Resampled the video to 25 fps: {}'.format(video_file_25fps))
call(cmd)
return video_file_25fps
def load_checkpoint(path, model):
'''
This function loads the trained model from the checkpoint
Args:
- path (string) : Path of the checkpoint file
- model (object) : Model object
Returns:
- model (object) : Model object with the weights loaded from the checkpoint
'''
# Load the checkpoint
if use_cuda:
checkpoint = torch.load(path)
else:
checkpoint = torch.load(path, map_location="cpu")
s = checkpoint["state_dict"]
new_s = {}
for k, v in s.items():
new_s[k.replace('module.', '')] = v
model.load_state_dict(new_s)
if use_cuda:
model.cuda()
print("Loaded checkpoint from: {}".format(path))
return model.eval()
def load_video_frames(video_file):
'''
This function extracts the frames from the video
Args:
- video_file (string) : Path of the video file
Returns:
- frames (list) : List of frames extracted from the video
- msg (string) : Message to be returned
'''
# Read the video
try:
vr = VideoReader(video_file, ctx=cpu(0))
except:
msg = "Oops! Could not load the input video file"
return None, msg
# Extract the frames
frames = []
for k in range(len(vr)):
frames.append(vr[k].asnumpy())
frames = np.asarray(frames)
return frames, "success"
def get_keypoints(frames):
'''
This function extracts the keypoints from the frames using MediaPipe Holistic pipeline
Args:
- frames (list) : List of frames extracted from the video
Returns:
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
- msg (string) : Message to be returned
'''
try:
holistic = mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5)
resolution = frames[0].shape
all_frame_kps = []
for frame in frames:
results = holistic.process(frame)
pose, left_hand, right_hand, face = None, None, None, None
if results.pose_landmarks is not None:
pose = protobuf_to_dict(results.pose_landmarks)['landmark']
if results.left_hand_landmarks is not None:
left_hand = protobuf_to_dict(results.left_hand_landmarks)['landmark']
if results.right_hand_landmarks is not None:
right_hand = protobuf_to_dict(results.right_hand_landmarks)['landmark']
if results.face_landmarks is not None:
face = protobuf_to_dict(results.face_landmarks)['landmark']
frame_dict = {"pose":pose, "left_hand":left_hand, "right_hand":right_hand, "face":face}
all_frame_kps.append(frame_dict)
kp_dict = {"kps":all_frame_kps, "resolution":resolution}
except Exception as e:
print("Error: ", e)
return None, "Error: Could not extract keypoints from the frames"
return kp_dict, "success"
def check_visible_gestures(kp_dict):
'''
This function checks if the gestures in the video are visible
Args:
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
Returns:
- msg (string) : Message to be returned
'''
keypoints = kp_dict['kps']
keypoints = np.array(keypoints)
if len(keypoints)<25:
msg = "Not enough keypoints to process! Please give a longer video as input"
return msg
pose_count, hand_count = 0, 0
for frame_kp_dict in keypoints:
pose = frame_kp_dict["pose"]
left_hand = frame_kp_dict["left_hand"]
right_hand = frame_kp_dict["right_hand"]
if pose is None:
pose_count += 1
if left_hand is None and right_hand is None:
hand_count += 1
if hand_count/len(keypoints) > 0.7 or pose_count/len(keypoints) > 0.7:
msg = "The gestures in the input video are not visible! Please give a video with visible gestures as input."
return msg
print("Successfully verified the input video - Gestures are visible!")
return "success"
def load_rgb_masked_frames(input_frames, kp_dict, stride=1, window_frames=25, width=480, height=270):
'''
This function masks the faces using the keypoints extracted from the frames
Args:
- input_frames (list) : List of frames extracted from the video
- kp_dict (dict) : Dictionary containing the keypoints and the resolution of the frames
- stride (int) : Stride to extract the frames
- window_frames (int) : Number of frames in each window that is given as input to the model
- width (int) : Width of the frames
- height (int) : Height of the frames
Returns:
- input_frames (array) : Frame window to be given as input to the model
- num_frames (int) : Number of frames to extract
- orig_masked_frames (array) : Masked frames extracted from the video
- msg (string) : Message to be returned
'''
# Face indices to extract the face-coordinates needed for masking
face_oval_idx = [10, 21, 54, 58, 67, 93, 103, 109, 127, 132, 136, 148, 149, 150, 152, 162, 172,
176, 234, 251, 284, 288, 297, 323, 332, 338, 356, 361, 365, 377, 378, 379, 389, 397, 400, 454]
input_keypoints, resolution = kp_dict['kps'], kp_dict['resolution']
print("Input keypoints: ", len(input_keypoints))
print("Creating masked input frames...")
input_frames_masked = []
for i, frame_kp_dict in tqdm(enumerate(input_keypoints)):
img = input_frames[i]
face = frame_kp_dict["face"]
if face is None:
img = cv2.resize(img, (width, height))
masked_img = cv2.rectangle(img, (0,0), (width,110), (0,0,0), -1)
else:
face_kps = []
for idx in range(len(face)):
if idx in face_oval_idx:
x, y = int(face[idx]["x"]*resolution[1]), int(face[idx]["y"]*resolution[0])
face_kps.append((x,y))
face_kps = np.array(face_kps)
x1, y1 = min(face_kps[:,0]), min(face_kps[:,1])
x2, y2 = max(face_kps[:,0]), max(face_kps[:,1])
masked_img = cv2.rectangle(img, (0,0), (resolution[1],y2+15), (0,0,0), -1)
if masked_img.shape[0] != width or masked_img.shape[1] != height:
masked_img = cv2.resize(masked_img, (width, height))
input_frames_masked.append(masked_img)
orig_masked_frames = np.array(input_frames_masked)
input_frames = np.array(input_frames_masked) / 255.
print("Input images full: ", input_frames.shape) # num_framesx270x480x3
input_frames = np.array([input_frames[i:i+window_frames, :, :] for i in range(0,input_frames.shape[0], stride) if (i+window_frames <= input_frames.shape[0])])
print("Input images window: ", input_frames.shape) # Tx25x270x480x3
num_frames = input_frames.shape[0]
if num_frames<10:
msg = "Not enough frames to process! Please give a longer video as input."
return None, None, None, msg
return input_frames, num_frames, orig_masked_frames, "success"
def load_spectrograms(wav_file, num_frames, window_frames=25, stride=4):
'''
This function extracts the spectrogram from the audio file
Args:
- wav_file (string) : Path of the extracted audio file
- num_frames (int) : Number of frames to extract
- window_frames (int) : Number of frames in each window that is given as input to the model
- stride (int) : Stride to extract the audio frames
Returns:
- spec (array) : Spectrogram array window to be used as input to the model
- orig_spec (array) : Spectrogram array extracted from the audio file
- msg (string) : Message to be returned
'''
# Extract the audio from the input video file using ffmpeg
try:
wav = librosa.load(wav_file, sr=16000)[0]
except:
msg = "Oops! Could extract the spectrograms from the audio file. Please check the input and try again."
return None, None, msg
# Convert to tensor
wav = torch.FloatTensor(wav).unsqueeze(0)
mel, _, _, _ = wav2filterbanks(wav.to(device))
spec = mel.squeeze(0).cpu().numpy()
orig_spec = spec
spec = np.array([spec[i:i+(window_frames*stride), :] for i in range(0, spec.shape[0], stride) if (i+(window_frames*stride) <= spec.shape[0])])
if len(spec) != num_frames:
spec = spec[:num_frames]
frame_diff = np.abs(len(spec) - num_frames)
if frame_diff > 60:
print("The input video and audio length do not match - The results can be unreliable! Please check the input video.")
return spec, orig_spec, "success"
def calc_optimal_av_offset(vid_emb, aud_emb, num_avg_frames, model):
'''
This function calculates the audio-visual offset between the video and audio
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- num_avg_frames (int) : Number of frames to average the scores
- model (object) : Model object
Returns:
- offset (int) : Optimal audio-visual offset
- msg (string) : Message to be returned
'''
pos_vid_emb, all_aud_emb, pos_idx, stride, status = create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames)
if status != "success":
return None, status
scores, _ = calc_av_scores(pos_vid_emb, all_aud_emb, model)
offset = scores.argmax()*stride - pos_idx
return offset.item(), "success"
def create_online_sync_negatives(vid_emb, aud_emb, num_avg_frames, stride=5):
'''
This function creates all possible positive and negative audio embeddings to compare and obtain the sync offset
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- num_avg_frames (int) : Number of frames to average the scores
- stride (int) : Stride to extract the negative windows
Returns:
- vid_emb_pos (array) : Positive video embedding array
- aud_emb_posneg (array) : All possible combinations of audio embedding array
- pos_idx_frame (int) : Positive video embedding array frame
- stride (int) : Stride used to extract the negative windows
- msg (string) : Message to be returned
'''
slice_size = num_avg_frames
aud_emb_posneg = aud_emb.squeeze(1).unfold(-1, slice_size, stride)
aud_emb_posneg = aud_emb_posneg.permute([0, 2, 1, 3])
aud_emb_posneg = aud_emb_posneg[:, :int(n_negative_samples/stride)+1]
pos_idx = (aud_emb_posneg.shape[1]//2)
pos_idx_frame = pos_idx*stride
min_offset_frames = -(pos_idx)*stride
max_offset_frames = (aud_emb_posneg.shape[1] - pos_idx - 1)*stride
print("With the current video length and the number of average frames, the model can predict the offsets in the range: [{}, {}]".format(min_offset_frames, max_offset_frames))
vid_emb_pos = vid_emb[:, :, pos_idx_frame:pos_idx_frame+slice_size]
if vid_emb_pos.shape[2] != slice_size:
msg = "Video is too short to use {} frames to average the scores. Please use a longer input video or reduce the number of average frames".format(slice_size)
return None, None, None, None, msg
return vid_emb_pos, aud_emb_posneg, pos_idx_frame, stride, "success"
def calc_av_scores(vid_emb, aud_emb, model):
'''
This function calls functions to calculate the audio-visual similarity and attention map between the video and audio embeddings
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- model (object) : Model object
Returns:
- scores (array) : Audio-visual similarity scores
- att_map (array) : Attention map
'''
scores = calc_att_map(vid_emb, aud_emb, model)
att_map = logsoftmax_2d(scores)
scores = scores.mean(-1)
return scores, att_map
def calc_att_map(vid_emb, aud_emb, model):
'''
This function calculates the similarity between the video and audio embeddings
Args:
- vid_emb (array) : Video embedding array
- aud_emb (array) : Audio embedding array
- model (object) : Model object
Returns:
- scores (array) : Audio-visual similarity scores
'''
vid_emb = vid_emb[:, :, None]
aud_emb = aud_emb.transpose(1, 2)
scores = run_func_in_parts(lambda x, y: (x * y).sum(1),
vid_emb,
aud_emb,
part_len=10,
dim=3,
device=device)
scores = model.logits_scale(scores[..., None]).squeeze(-1)
return scores
def generate_video(frames, audio_file, video_fname):
'''
This function generates the video from the frames and audio file
Args:
- frames (array) : Frames to be used to generate the video
- audio_file (string) : Path of the audio file
- video_fname (string) : Path of the video file
Returns:
- video_output (string) : Path of the video file
'''
fname = 'inference.avi'
video = cv2.VideoWriter(fname, cv2.VideoWriter_fourcc(*'DIVX'), 25, (frames[0].shape[1], frames[0].shape[0]))
for i in range(len(frames)):
video.write(cv2.cvtColor(frames[i], cv2.COLOR_BGR2RGB))
video.release()
no_sound_video = video_fname + '_nosound.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -c copy -an -strict -2 %s' % (fname, no_sound_video), shell=True)
if status != 0:
msg = "Oops! Could not generate the video. Please check the input video and try again."
return None, msg
video_output = video_fname + '.mp4'
status = subprocess.call('ffmpeg -hide_banner -loglevel panic -y -i %s -i %s -strict -2 -q:v 1 -shortest %s' %
(audio_file, no_sound_video, video_output), shell=True)
if status != 0:
msg = "Oops! Could not generate the video. Please check the input video and try again."
return None, msg
os.remove(fname)
os.remove(no_sound_video)
return video_output
def sync_correct_video(video_path, frames, wav_file, offset, result_folder, sample_rate=16000, fps=25):
'''
This function corrects the video and audio to sync with each other
Args:
- video_path (string) : Path of the video file
- frames (array) : Frames to be used to generate the video
- wav_file (string) : Path of the audio file
- offset (int) : Predicted sync-offset to be used to correct the video
- result_folder (string) : Path of the result folder to save the output sync-corrected video
- sample_rate (int) : Sample rate of the audio
- fps (int) : Frames per second of the video
Returns:
- video_output (string) : Path of the video file
'''
if offset == 0:
print("The input audio and video are in-sync! No need to perform sync correction.")
return video_path
print("Performing Sync Correction...")
corrected_frames = np.zeros_like(frames)
if offset > 0:
audio_offset = int(offset*(sample_rate/fps))
wav = librosa.core.load(wav_file, sr=sample_rate)[0]
corrected_wav = wav[audio_offset:]
corrected_wav_file = os.path.join(result_folder, "audio_sync_corrected.wav")
write(corrected_wav_file, sample_rate, corrected_wav)
wav_file = corrected_wav_file
corrected_frames = frames
elif offset < 0:
corrected_frames[0:len(frames)+offset] = frames[np.abs(offset):]
corrected_frames = corrected_frames[:len(frames)-np.abs(offset)]
corrected_video_path = os.path.join(result_folder, "result_sync_corrected")
video_output = generate_video(corrected_frames, wav_file, corrected_video_path)
return video_output
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
def process_video(video_path, num_avg_frames, apply_preprocess):
try:
# Extract the video filename
video_fname = os.path.basename(video_path.split(".")[0])
# Create folders to save the inputs and results
result_folder = os.path.join("results", video_fname)
result_folder_input = os.path.join(result_folder, "input")
result_folder_output = os.path.join(result_folder, "output")
if os.path.exists(result_folder):
rmtree(result_folder)
os.makedirs(result_folder)
os.makedirs(result_folder_input)
os.makedirs(result_folder_output)
# Preprocess the video
print("Applying preprocessing: ", apply_preprocess)
wav_file, fps, vid_path_processed, status = preprocess_video(video_path, result_folder_input, apply_preprocess)
if status != "success":
return status, None
print("Successfully preprocessed the video")
# Resample the video to 25 fps if it is not already 25 fps
print("FPS of video: ", fps)
if fps!=25:
vid_path = resample_video(vid_path_processed, "preprocessed_video_25fps", result_folder_input)
orig_vid_path_25fps = resample_video(video_path, "input_video_25fps", result_folder_input)
else:
vid_path = vid_path_processed
orig_vid_path_25fps = video_path
# Load the original video frames (before pre-processing) - Needed for the final sync-correction
orig_frames, status = load_video_frames(orig_vid_path_25fps)
if status != "success":
return status, None
# Load the pre-processed video frames
frames, status = load_video_frames(vid_path)
if status != "success":
return status, None
print("Successfully extracted the video frames")
if len(frames) < num_avg_frames:
return "Error: The input video is too short. Please use a longer input video.", None
# Load keypoints and check if gestures are visible
kp_dict, status = get_keypoints(frames)
if status != "success":
return status, None
print("Successfully extracted the keypoints: ", len(kp_dict), len(kp_dict["kps"]))
status = check_visible_gestures(kp_dict)
if status != "success":
return status, None
# Load RGB frames
rgb_frames, num_frames, orig_masked_frames, status = load_rgb_masked_frames(frames, kp_dict, window_frames=25, width=480, height=270)
if status != "success":
return status, None
print("Successfully loaded the RGB frames")
# Convert frames to tensor
rgb_frames = np.transpose(rgb_frames, (4, 0, 1, 2, 3))
rgb_frames = torch.FloatTensor(rgb_frames).unsqueeze(0)
B = rgb_frames.size(0)
print("Successfully converted the frames to tensor")
# Load spectrograms
spec, orig_spec, status = load_spectrograms(wav_file, num_frames, window_frames=25)
if status != "success":
return status, None
spec = torch.FloatTensor(spec).unsqueeze(0).unsqueeze(0).permute(0, 1, 2, 4, 3)
print("Successfully loaded the spectrograms")
# Create input windows
video_sequences = torch.cat([rgb_frames[:, :, i] for i in range(rgb_frames.size(2))], dim=0)
audio_sequences = torch.cat([spec[:, :, i] for i in range(spec.size(2))], dim=0)
# Load the trained model
model = Transformer_RGB()
model = load_checkpoint(CHECKPOINT_PATH, model)
print("Successfully loaded the model")
# Process in batches
batch_size = 12
video_emb = []
audio_emb = []
for i in tqdm(range(0, len(video_sequences), batch_size)):
video_inp = video_sequences[i:i+batch_size, ]
audio_inp = audio_sequences[i:i+batch_size, ]
vid_emb = model.forward_vid(video_inp.to(device))
vid_emb = torch.mean(vid_emb, axis=-1).unsqueeze(-1)
aud_emb = model.forward_aud(audio_inp.to(device))
video_emb.append(vid_emb.detach())
audio_emb.append(aud_emb.detach())
torch.cuda.empty_cache()
audio_emb = torch.cat(audio_emb, dim=0)
video_emb = torch.cat(video_emb, dim=0)
# L2 normalize embeddings
video_emb = torch.nn.functional.normalize(video_emb, p=2, dim=1)
audio_emb = torch.nn.functional.normalize(audio_emb, p=2, dim=1)
audio_emb = torch.split(audio_emb, B, dim=0)
audio_emb = torch.stack(audio_emb, dim=2)
audio_emb = audio_emb.squeeze(3)
audio_emb = audio_emb[:, None]
video_emb = torch.split(video_emb, B, dim=0)
video_emb = torch.stack(video_emb, dim=2)
video_emb = video_emb.squeeze(3)
print("Successfully extracted GestSync embeddings")
# Calculate sync offset
pred_offset, status = calc_optimal_av_offset(video_emb, audio_emb, num_avg_frames, model)
if status != "success":
return status, None
print("Predicted offset: ", pred_offset)
# Generate sync-corrected video
video_output = sync_correct_video(video_path, orig_frames, wav_file, pred_offset, result_folder_output, sample_rate=16000, fps=fps)
print("Successfully generated the video:", video_output)
return f"Predicted offset: {pred_offset}", video_output
except Exception as e:
return f"Error: {str(e)}", None
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
if __name__ == "__main__":
sys.stdout = Logger("output.log")
# Define the custom HTML for the header
custom_css = """
<style>
body {
background-color: #ffffff;
color: #333333; /* Default text color */
}
.container {
max-width: 100% !important;
padding-left: 0 !important;
padding-right: 0 !important;
}
.header {
background-color: #f0f0f0;
color: #333333;
padding: 30px;
margin-bottom: 30px;
text-align: center;
font-family: 'Helvetica Neue', Arial, sans-serif;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.header h1 {
font-size: 36px;
margin-bottom: 15px;
font-weight: bold;
color: #333333; /* Explicitly set heading color */
}
.header h2 {
font-size: 24px;
margin-bottom: 10px;
color: #333333; /* Explicitly set subheading color */
}
.header p {
font-size: 18px;
margin: 5px 0;
color: #666666;
}
.blue-text {
color: #4a90e2;
}
/* Custom styles for slider container */
.slider-container {
background-color: white !important;
padding-top: 0.9em;
padding-bottom: 0.9em;
}
/* Add gap before examples */
.examples-holder {
margin-top: 2em;
}
/* Set fixed size for example videos */
.gradio-container .gradio-examples .gr-sample {
width: 240px !important;
height: 135px !important;
object-fit: cover;
display: inline-block;
margin-right: 10px;
}
.gradio-container .gradio-examples {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
/* Ensure the parent container does not stretch */
.gradio-container .gradio-examples {
max-width: 100%;
overflow: hidden;
}
/* Additional styles to ensure proper sizing in Safari */
.gradio-container .gradio-examples .gr-sample img {
width: 240px !important;
height: 135px !important;
object-fit: cover;
}
</style>
"""
custom_html = custom_css + """
<div class="header">
<h1><span class="blue-text">GestSync:</span> Determining who is speaking without a talking head</h1>
<h2>Upload any video to predict the synchronization offset and generate a sync-corrected video</h2>
<p>Sindhu Hegde and Andrew Zisserman</p>
<p>VGG, University of Oxford</p>
</div>
"""
# Define paths to sample videos
sample_videos = [
"samples/sync_sample_1.mp4",
"samples/sync_sample_2.mp4",
]
# Define Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo:
gr.HTML(custom_html)
with gr.Row():
with gr.Column():
with gr.Group(elem_classes="slider-container"):
num_avg_frames = gr.Slider(
minimum=50,
maximum=150,
step=5,
value=75,
label="Number of Average Frames",
)
apply_preprocess = gr.Checkbox(label="Apply Preprocessing", value=False)
video_input = gr.Video(label="Upload Video", height=400)
with gr.Column():
result_text = gr.Textbox(label="Result")
output_video = gr.Video(label="Sync Corrected Video", height=400)
with gr.Row():
submit_button = gr.Button("Submit", variant="primary")
clear_button = gr.Button("Clear")
submit_button.click(
fn=process_video,
inputs=[video_input, num_avg_frames, apply_preprocess],
outputs=[result_text, output_video]
)
clear_button.click(
fn=lambda: (None, 75, False, "", None),
inputs=[],
outputs=[video_input, num_avg_frames, apply_preprocess, result_text, output_video]
)
gr.HTML('<div class="examples-holder"></div>')
# Add examples
gr.Examples(
examples=sample_videos,
inputs=video_input,
outputs=None,
fn=None,
cache_examples=False,
)
logs = gr.Textbox(label="Logs")
demo.load(read_logs, None, logs, every=1)
# Launch the interface
demo.queue().launch(allowed_paths=["."], show_error=True) |