File size: 4,681 Bytes
3087373
916cbfe
 
6d70e63
 
916cbfe
 
 
 
3087373
95ba32b
3087373
4a3a4a3
95ba32b
916cbfe
 
 
 
 
 
3087373
 
95ba32b
 
 
 
 
 
 
 
 
 
 
 
4a3a4a3
73df6bf
4a3a4a3
95ba32b
916cbfe
 
 
 
 
6d70e63
916cbfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d70e63
916cbfe
 
 
 
6d70e63
916cbfe
6d70e63
 
 
 
 
 
 
 
 
 
916cbfe
 
 
 
 
 
 
 
 
 
 
 
4a3a4a3
6d70e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a3a4a3
 
3087373
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import joblib

from copy import deepcopy

import pandas as pd
import plotly.express as px

from huggingface_hub import hf_hub_download, snapshot_download

import streamlit as st
import streamlit_analytics
from utils import add_logo_to_sidebar, add_footer, add_email_signup_form

HF_TOKEN = os.environ.get("HF_TOKEN")
MODEL_REPO_ID = "simplexico/cuad-sklearn-contract-clustering"
DATA_REPO_ID = "simplexico/cuad-top-ten"
MODEL_FILENAME = "cuad_tfidf_umap_kmeans.pkl"
DATA_FILENAME = "cuad_top_ten_popular_contract_types.json"

streamlit_analytics.start_tracking()

st.set_page_config(
    page_title="Organise Demo",
    page_icon="πŸ—‚",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'mailto:hello@simplexico.ai',
        'Report a bug': None,
        'About': "## This a demo showcasing different Legal AI Actions"
    }
)

add_logo_to_sidebar()
st.sidebar.success("πŸ‘† Select a demo above.")

st.title('πŸ—‚ Organise Demo')
st.write("""
This demo shows how AI can be used to organise contracts.
We've trained a model to group contracts into similar types.
The plot below shows a sample set of contracts that have been automatically grouped together.
Each point in the plot represents how the model interprets a contract, the closer together a pair of points are, the more similar they appear to the model.
Similar documents are grouped by color.
\n**TIP:** Hover over each point to see the filename of the contract. Groups can be added or removed by clicking on the symbol in the plot legend.
""")
st.write("**πŸ‘ˆ Upload your own contracts on the left (as .txt files)** and hit the button **Organise Data** to see how your own contracts can be grouped together")

@st.cache(allow_output_mutation=True)
def load_model():
    model = joblib.load(
        hf_hub_download(repo_id=MODEL_REPO_ID, filename=MODEL_FILENAME, token=HF_TOKEN)
    )
    return model

@st.cache(allow_output_mutation=True)
def load_dataset():
    snapshot_download(repo_id=DATA_REPO_ID, token=HF_TOKEN, local_dir='./', repo_type='dataset')
    df = pd.read_json(DATA_FILENAME)
    return df

def get_transform_and_predictions(model, X):
    y = model.predict(X)
    X_transform = model[:2].transform(X)
    return X_transform, y

def generate_plot(X, y, filenames):
    fig = px.scatter_3d(
        x=X[:,0],
        y=X[:,1],
        z=X[:,2],
        color=[str(y_i) for y_i in y], hover_name=filenames)
    
    fig.update_traces(
        marker_size=8,
        marker_line=dict(width=2),
        selector=dict(mode='markers')
    )

    fig.update_layout(
        legend=dict(
            title='grouping',
            yanchor="top",
            y=0.99,
            xanchor="left",
            x=0.01
        ),
        width=1100,
        height=900
    )

    return fig

uploaded_files = st.sidebar.file_uploader("Select contracts to organise ", accept_multiple_files=True)

button = st.sidebar.button('Organise Contracts', type='primary', use_container_width=True)

with st.container():
    with st.spinner('βš™οΈ Loading model...'):
        cuad_tfidf_umap_kmeans = load_model()
        cuad_df = load_dataset()

        X = [text[:500] for text in cuad_df['text'].to_list()]
        filenames = cuad_df['filename'].to_list()

        X_transform, y = get_transform_and_predictions(cuad_tfidf_umap_kmeans, X)

        fig = generate_plot(X_transform, y, filenames)

        figure = st.plotly_chart(fig, use_container_width=True)

    if button:
        figure.empty()

        with st.spinner('βš™οΈ Training model...'):

            if not uploaded_files or not len(uploaded_files) > 1:
                st.write(
                    "Please add at least two contracts"
                )
            else:
                if len(uploaded_files) < 10:
                    n_clusters = 3
                else:
                    n_clusters = 8
            
                X_train = [uploaded_file.read()[:500] for uploaded_file in uploaded_files]
                filenames = [uploaded_file.name for uploaded_file in uploaded_files]

                tfidf_umap_kmeans = deepcopy(cuad_tfidf_umap_kmeans)
                tfidf_umap_kmeans.set_params(kmeans__n_clusters=4)
                tfidf_umap_kmeans.fit(X_train)

                X_transform, y = get_transform_and_predictions(cuad_tfidf_umap_kmeans, X_train)

                fig = generate_plot(X_transform, y, filenames)

                st.write("**Your organised contracts:**")

                st.plotly_chart(fig, use_container_width=True)
            
add_email_signup_form()

add_footer()

streamlit_analytics.stop_tracking(unsafe_password=os.environ["ANALYTICS_PASSWORD"])