File size: 5,023 Bytes
7262628
 
 
 
 
 
 
 
6afda1a
7262628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afda1a
 
7262628
 
 
 
 
 
 
 
 
 
 
 
 
6afda1a
 
7262628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afda1a
7262628
 
bf68054
6afda1a
7262628
 
 
6afda1a
7262628
 
 
 
6afda1a
7262628
 
 
 
 
 
 
71e2e6b
7262628
 
 
 
 
 
 
 
 
71e2e6b
7262628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afda1a
7262628
 
6afda1a
7262628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6afda1a
 
 
7262628
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import pinecone

# init connection to pinecone
pinecone.init(
    api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a",  # app.pinecone.io
    environment="asia-southeast1-gcp-free"  # find next to api key
)

index_name = "hybrid-image-search"
index = pinecone.GRPCIndex(index_name)

from datasets import load_dataset

# load the dataset from huggingface datasets hub
fashion = load_dataset(
    "ashraq/fashion-product-images-small",
    split='train[:1000]'
)

images = fashion["image"]
metadata = fashion.remove_columns("image")

import requests

with open('pinecone_text.py' ,'w') as fb:
    fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text)

from transformers import BertTokenizerFast
import pinecone_text

# load bert tokenizer from huggingface
tokenizer = BertTokenizerFast.from_pretrained(
    'bert-base-uncased'
)

def tokenize_func(text):
    token_ids = tokenizer(
        text,
        add_special_tokens=False
    )['input_ids']
    return tokenizer.convert_ids_to_tokens(token_ids)

bm25 = pinecone_text.BM25(tokenize_func)
bm25.fit(metadata['productDisplayName'])

from sentence_transformers import SentenceTransformer
import transformers.models.clip.image_processing_clip
import torch

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# load a CLIP model from huggingface
model = SentenceTransformer(
    'sentence-transformers/clip-ViT-B-32',
    device=device
)



def hybrid_scale(dense, sparse, alpha: float):
    if alpha < 0 or alpha > 1:
        raise ValueError("Alpha must be between 0 and 1")
    # scale sparse and dense vectors to create hybrid search vecs
    hsparse = {
        'indices': sparse['indices'],
        'values':  [v * (1 - alpha) for v in sparse['values']]
    }
    hdense = [v * alpha for v in dense]
    return hdense, hsparse



def text_to_image(query, alpha, k_results):
  sparse = bm25.transform_query(query)
  dense = model.encode(query).tolist()

  # scale sparse and dense vectors
  hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)

  # search
  result = index.query(
      top_k=k_results,
      vector=hdense,
      sparse_vector=hsparse,
      include_metadata=True
  )
  # used returned product ids to get images
  imgs = [images[int(r["id"])] for r in result["matches"]]

  description = []
  for x in result["matches"]:
    description.append( x["metadata"]['productDisplayName'] )

  return imgs, description



counter = {"dir_num": 1}
img_files = {'x':[]}

def img_to_file_list(imgs):
  path = "searches"
  sub_path = './' + path + '/' + 'search' + '_' + str(counter["dir_num"])

  # Check whether the specified path exists or not
  isExist = os.path.exists('.'+'/'+path)
    
  if not isExist:
    print("Directory does not exists")
  # Create a new directory because it does not exist
    os.makedirs('.'+'/'+path, exist_ok = True)
    print("The new directory is created!")

  # Check whether the specified path exists or not
  isExist = os.path.exists(sub_path)
    
  if isExist:
    shutil.rmtree(sub_path)

  os.makedirs(sub_path, exist_ok = True)

  img_files = {'search'+str(counter["dir_num"]):[]}
  i = 0
 
  for img in imgs:
    img.save(sub_path+"/img_" + str(i) + ".png","PNG")
    img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png")
    i+=1

  counter["dir_num"]+=1

  return img_files['search'+str(counter["dir_num"]-1)]


import gradio as gr
from deep_translator import GoogleTranslator

counter = {"dir_num": 1}
img_files = {'x':[]}

def fake_gan(text, alpha):
    text_eng=GoogleTranslator(source='iw', target='en').translate(text)
    imgs, descr = text_to_image(text_eng, alpha, 3)
    img_files = img_to_file_list(imgs)
    return img_files

def fake_text(text, alpha):
    en_text = GoogleTranslator(source='iw', target='en').translate(text)
    img , descr = text_to_image(en_text, alpha, 3)
    return descr


with gr.Blocks() as demo:

    with gr.Row():

        text = gr.Textbox(
            value = "ื’'ื™ื ืก ื›ื—ื•ืœ ืœื’ื‘ืจื™ื",
            label="Enter the product characteristics:",
        )

        alpha = gr.Slider(0, 1, step=0.01, label='Choose alpha:', value = 0.05)

    with gr.Row():
        btn = gr.Button("Generate image")

    with gr.Row():
        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(columns=[8], rows=[2], object_fit='scale-down', height='auto')

    with gr.Row():
        selected = gr.Textbox(label="Product description: ", interactive=False, value = "-----> Description <-------",placeholder="Selected")

    btn.click(fake_gan, inputs=[text, alpha], outputs=gallery)

    def get_select_index(evt: gr.SelectData,text,alpha):
        print(evt.index)
        eng_text = fake_text(text, alpha)[evt.index]
        #heb_text = GoogleTranslator(source='en', target='iw').translate(eng_text)
        return eng_text
        
    gallery.select( fn=get_select_index, inputs=[text,alpha], outputs=selected )

demo.launch()