File size: 3,665 Bytes
64ab470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import numpy as np
import pandas as pd
from datetime import datetime
import os
import re

from huggingface_hub import hf_hub_url, cached_download
from gensim.models.fasttext import load_facebook_model

ACCESS_KEY = os.environ.get('ACCESS_KEY')

# download model from huggingface hub
url = hf_hub_url(repo_id="simonschoe/call2vec", filename="model.bin")
cached_download(url)

# load model via gensim
model = load_facebook_model(cached_download(url))

def process(_input, topn):

    # split by delimiting characters
    _input = re.split('[,;\n]', _input)

    # convert input to lower, replace whitespaces by underscores
    _input = [s.strip().lower().replace(' ', '_') for s in _input if s]

    if _input[0] != ACCESS_KEY:
        with open('log.txt', 'a') as f:
            f.write(str(datetime.now()) + '+++' + '___'.join(_input) + '\n')

    # apply model
    if len(_input)>1:
        # compute average seed embedding
        avg_input = np.stack([model.wv[w] for w in _input], axis=0).mean(axis=0)
        # find similarities
        nearest_neighbors = model.wv.most_similar(positive=avg_input, topn=topn)
        frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]
    else:
        # find similarities
        nearest_neighbors = model.wv.most_similar(positive=_input[0], topn=topn)
        frequencies = [model.wv.get_vecattr(nn[0], 'count') for nn in nearest_neighbors]

    result = pd.DataFrame([(a[0],a[1],b) for a,b in zip(nearest_neighbors, frequencies)], columns=['Token', 'Cosine Similarity', 'Frequency'])
    if _input[0] == ACCESS_KEY:
        with open('log.txt', 'r') as f:
            prompts = f.readlines()
            prompts = [p.strip().split('+++') for p in prompts]
        result = pd.DataFrame(prompts, columns=['Time', 'Prompt'])
    result.to_csv('result.csv')
    return result, 'result.csv', '\n'.join(_input)

def save(df):
    df.to_csv('result.csv')
    return 'result.csv'

demo = gr.Blocks()

with demo:
    gr.Markdown("# Call2Vec")
    gr.Markdown("## Earnings call transformation project")
    with gr.Row():
        with gr.Column():
            gr.Markdown("""
                #### Project Description
                Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.""")
            gr.Markdown(
                """#### App usage:
                Add your input prompts to the text field on the right. To use multiple input prompts at once separate
                them by comma, semicolon or a new line
                ##### Examples
                - Climate change
                - Financial risk, energy dependency, climate neutrality
                """
            )
        with gr.Column():
            text_input = gr.Textbox(lines=1)
            with gr.Row():
                n_output = gr.Slider(minimum=5, maximum=50, step=1)
                compute_button = gr.Button("Compute")
            df_output = gr.Dataframe(interactive=False)
            file_out = gr.File(interactive=False)

    compute_button.click(process, inputs=[text_input, n_output], outputs=[df_output, file_out, text_input])

demo.launch()